L(s) = 1 | + (0.374 + 0.927i)2-s + (−0.961 + 0.275i)3-s + (−0.719 + 0.694i)4-s + (−0.615 − 0.788i)6-s + (−0.913 + 0.406i)7-s + (−0.913 − 0.406i)8-s + (0.848 − 0.529i)9-s + (0.5 − 0.866i)12-s + (−0.0348 − 0.999i)13-s + (−0.719 − 0.694i)14-s + (0.0348 − 0.999i)16-s + (−0.848 − 0.529i)17-s + (0.809 + 0.587i)18-s + (0.766 − 0.642i)21-s + (−0.173 + 0.984i)23-s + (0.990 + 0.139i)24-s + ⋯ |
L(s) = 1 | + (0.374 + 0.927i)2-s + (−0.961 + 0.275i)3-s + (−0.719 + 0.694i)4-s + (−0.615 − 0.788i)6-s + (−0.913 + 0.406i)7-s + (−0.913 − 0.406i)8-s + (0.848 − 0.529i)9-s + (0.5 − 0.866i)12-s + (−0.0348 − 0.999i)13-s + (−0.719 − 0.694i)14-s + (0.0348 − 0.999i)16-s + (−0.848 − 0.529i)17-s + (0.809 + 0.587i)18-s + (0.766 − 0.642i)21-s + (−0.173 + 0.984i)23-s + (0.990 + 0.139i)24-s + ⋯ |
Λ(s)=(=(1045s/2ΓR(s)L(s)(0.0151+0.999i)Λ(1−s)
Λ(s)=(=(1045s/2ΓR(s)L(s)(0.0151+0.999i)Λ(1−s)
Degree: |
1 |
Conductor: |
1045
= 5⋅11⋅19
|
Sign: |
0.0151+0.999i
|
Analytic conductor: |
4.85295 |
Root analytic conductor: |
4.85295 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1045(784,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1045, (0: ), 0.0151+0.999i)
|
Particular Values
L(21) |
≈ |
0.5787483559+0.5876123364i |
L(21) |
≈ |
0.5787483559+0.5876123364i |
L(1) |
≈ |
0.6304476196+0.4114513263i |
L(1) |
≈ |
0.6304476196+0.4114513263i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1 |
| 19 | 1 |
good | 2 | 1+(0.374+0.927i)T |
| 3 | 1+(−0.961+0.275i)T |
| 7 | 1+(−0.913+0.406i)T |
| 13 | 1+(−0.0348−0.999i)T |
| 17 | 1+(−0.848−0.529i)T |
| 23 | 1+(−0.173+0.984i)T |
| 29 | 1+(−0.241−0.970i)T |
| 31 | 1+(0.669+0.743i)T |
| 37 | 1+(0.809+0.587i)T |
| 41 | 1+(0.961−0.275i)T |
| 43 | 1+(−0.173−0.984i)T |
| 47 | 1+(0.997+0.0697i)T |
| 53 | 1+(0.882+0.469i)T |
| 59 | 1+(−0.997+0.0697i)T |
| 61 | 1+(0.990−0.139i)T |
| 67 | 1+(−0.766−0.642i)T |
| 71 | 1+(−0.882+0.469i)T |
| 73 | 1+(−0.559−0.829i)T |
| 79 | 1+(−0.615+0.788i)T |
| 83 | 1+(0.978+0.207i)T |
| 89 | 1+(−0.939+0.342i)T |
| 97 | 1+(0.374+0.927i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.584969263831470272583356069156, −20.59615830025442090733432793828, −19.68632459528327304743501018813, −19.113010458265643656767288774693, −18.37705473658716738702163442102, −17.60421339447413162553085489153, −16.67394270138998706674193410146, −16.060314850168677687315033364309, −14.92820277198057694263918626148, −13.95850933694102476348522195613, −13.09200293629506157076314121399, −12.687803138315436569141732857895, −11.775743970813339735835715823996, −11.05935972458363073996209011178, −10.367928884038574021223597064776, −9.592861532398875085461443039369, −8.70034383399679289914230999103, −7.26019486974582374049086406627, −6.37492115678525844929127005271, −5.82627942345600236325235075476, −4.4619386243102804438800420805, −4.160702494166039706392556347185, −2.77383025666942221380779483377, −1.783951273462246224308018507490, −0.62681340557089485643275964771,
0.639843960065329748470682321854, 2.67019769055289221416698880791, 3.68751979250983943052048151505, 4.58762304780852010328247969836, 5.55137256077118031044210598296, 6.03630105852487732487085281364, 6.89876033643579612787174362867, 7.689617543313675801686945157890, 8.90094090031547383918114090308, 9.6210183299032632848797771247, 10.45712861719299119394557568121, 11.65096936839972481516696565490, 12.30227833859180381820291726916, 13.122456779634417212347266340404, 13.70447600093490824375496638907, 15.1309181493126480481098383155, 15.53783760270162570449771908066, 16.102720864070593134076462096620, 16.998393361644352062166323460942, 17.64690209870681736965229034559, 18.28683216131718077355417686005, 19.19250993941193053158013674681, 20.33324765141996991282138352336, 21.35983934895203063251477061857, 22.062639297740253672951395333960