L(s) = 1 | + (0.374 − 0.927i)2-s + (−0.961 − 0.275i)3-s + (−0.719 − 0.694i)4-s + (−0.615 + 0.788i)6-s + (−0.913 − 0.406i)7-s + (−0.913 + 0.406i)8-s + (0.848 + 0.529i)9-s + (0.5 + 0.866i)12-s + (−0.0348 + 0.999i)13-s + (−0.719 + 0.694i)14-s + (0.0348 + 0.999i)16-s + (−0.848 + 0.529i)17-s + (0.809 − 0.587i)18-s + (0.766 + 0.642i)21-s + (−0.173 − 0.984i)23-s + (0.990 − 0.139i)24-s + ⋯ |
L(s) = 1 | + (0.374 − 0.927i)2-s + (−0.961 − 0.275i)3-s + (−0.719 − 0.694i)4-s + (−0.615 + 0.788i)6-s + (−0.913 − 0.406i)7-s + (−0.913 + 0.406i)8-s + (0.848 + 0.529i)9-s + (0.5 + 0.866i)12-s + (−0.0348 + 0.999i)13-s + (−0.719 + 0.694i)14-s + (0.0348 + 0.999i)16-s + (−0.848 + 0.529i)17-s + (0.809 − 0.587i)18-s + (0.766 + 0.642i)21-s + (−0.173 − 0.984i)23-s + (0.990 − 0.139i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0151 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0151 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5787483559 - 0.5876123364i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5787483559 - 0.5876123364i\) |
\(L(1)\) |
\(\approx\) |
\(0.6304476196 - 0.4114513263i\) |
\(L(1)\) |
\(\approx\) |
\(0.6304476196 - 0.4114513263i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (0.374 - 0.927i)T \) |
| 3 | \( 1 + (-0.961 - 0.275i)T \) |
| 7 | \( 1 + (-0.913 - 0.406i)T \) |
| 13 | \( 1 + (-0.0348 + 0.999i)T \) |
| 17 | \( 1 + (-0.848 + 0.529i)T \) |
| 23 | \( 1 + (-0.173 - 0.984i)T \) |
| 29 | \( 1 + (-0.241 + 0.970i)T \) |
| 31 | \( 1 + (0.669 - 0.743i)T \) |
| 37 | \( 1 + (0.809 - 0.587i)T \) |
| 41 | \( 1 + (0.961 + 0.275i)T \) |
| 43 | \( 1 + (-0.173 + 0.984i)T \) |
| 47 | \( 1 + (0.997 - 0.0697i)T \) |
| 53 | \( 1 + (0.882 - 0.469i)T \) |
| 59 | \( 1 + (-0.997 - 0.0697i)T \) |
| 61 | \( 1 + (0.990 + 0.139i)T \) |
| 67 | \( 1 + (-0.766 + 0.642i)T \) |
| 71 | \( 1 + (-0.882 - 0.469i)T \) |
| 73 | \( 1 + (-0.559 + 0.829i)T \) |
| 79 | \( 1 + (-0.615 - 0.788i)T \) |
| 83 | \( 1 + (0.978 - 0.207i)T \) |
| 89 | \( 1 + (-0.939 - 0.342i)T \) |
| 97 | \( 1 + (0.374 - 0.927i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.062639297740253672951395333960, −21.35983934895203063251477061857, −20.33324765141996991282138352336, −19.19250993941193053158013674681, −18.28683216131718077355417686005, −17.64690209870681736965229034559, −16.998393361644352062166323460942, −16.102720864070593134076462096620, −15.53783760270162570449771908066, −15.1309181493126480481098383155, −13.70447600093490824375496638907, −13.122456779634417212347266340404, −12.30227833859180381820291726916, −11.65096936839972481516696565490, −10.45712861719299119394557568121, −9.6210183299032632848797771247, −8.90094090031547383918114090308, −7.689617543313675801686945157890, −6.89876033643579612787174362867, −6.03630105852487732487085281364, −5.55137256077118031044210598296, −4.58762304780852010328247969836, −3.68751979250983943052048151505, −2.67019769055289221416698880791, −0.639843960065329748470682321854,
0.62681340557089485643275964771, 1.783951273462246224308018507490, 2.77383025666942221380779483377, 4.160702494166039706392556347185, 4.4619386243102804438800420805, 5.82627942345600236325235075476, 6.37492115678525844929127005271, 7.26019486974582374049086406627, 8.70034383399679289914230999103, 9.592861532398875085461443039369, 10.367928884038574021223597064776, 11.05935972458363073996209011178, 11.775743970813339735835715823996, 12.687803138315436569141732857895, 13.09200293629506157076314121399, 13.95850933694102476348522195613, 14.92820277198057694263918626148, 16.060314850168677687315033364309, 16.67394270138998706674193410146, 17.60421339447413162553085489153, 18.37705473658716738702163442102, 19.113010458265643656767288774693, 19.68632459528327304743501018813, 20.59615830025442090733432793828, 21.584969263831470272583356069156