Properties

Label 990.16.33.a1.c1
Order $ 2 \cdot 3 \cdot 5 $
Index $ 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times S_3$
Order: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Index: \(33\)\(\medspace = 3 \cdot 11 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $a^{5}, bc^{22}, a^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $(C_3\times C_{33}):C_{10}$
Order: \(990\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{11}\times C_3^2:\GL(2,3)$, of order \(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_5$
Normalizer:$C_5\times S_3$
Normal closure:$(C_3\times C_{33}):C_{10}$
Core:$C_3$
Minimal over-subgroups:$C_{33}:C_{10}$$C_{15}:S_3$
Maximal under-subgroups:$C_{15}$$C_{10}$$S_3$
Autjugate subgroups:990.16.33.a1.a1990.16.33.a1.b1990.16.33.a1.d1

Other information

Number of subgroups in this conjugacy class$33$
Möbius function$1$
Projective image$(C_3\times C_{33}):C_{10}$