-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': False, 'ambient': '990.16', 'ambient_counter': 16, 'ambient_order': 990, 'ambient_tex': '(C_3\\times C_{33}):C_{10}', 'central': False, 'central_factor': False, 'centralizer_order': 5, 'characteristic': False, 'core_order': 3, 'counter': 27, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '990.16.33.a1.c1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': False, 'old_label': '33.a1.c1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 33, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '30.1', 'subgroup_hash': 1, 'subgroup_order': 30, 'subgroup_tex': 'C_5\\times S_3', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '990.16', 'aut_centralizer_order': 60, 'aut_label': '33.a1', 'aut_quo_index': None, 'aut_stab_index': 132, 'aut_weyl_group': '6.1', 'aut_weyl_index': 7920, 'centralizer': '198.a1.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['3.a1.c1', '11.a1.a1'], 'contains': ['66.a1.c1', '99.a1.a1', '165.a1.c1'], 'core': '330.a1.c1', 'coset_action_label': None, 'count': 33, 'diagramx': [5195, -1, 9630, -1, 4118, -1, 9416, -1], 'generators': [5, 670, 2], 'label': '990.16.33.a1.c1', 'mobius_quo': None, 'mobius_sub': 1, 'normal_closure': '1.a1.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '33.a1.c1', 'old_label': '33.a1.c1', 'projective_image': '990.16', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '33.a1.c1', 'subgroup_fusion': None, 'weyl_group': '6.1'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': False, 'abelian_quotient': '10.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 12, 'aut_gen_orders': [2, 12], 'aut_gens': [[1, 2], [1, 22], [11, 14]], 'aut_group': '24.5', 'aut_hash': 5, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 24, 'aut_permdeg': 7, 'aut_perms': [120, 1449], 'aut_phi_ratio': 3.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 3, 1, 1], [3, 2, 1, 1], [5, 1, 4, 1], [10, 3, 4, 1], [15, 2, 4, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_4\\times S_3', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 4, 'autcent_group': '4.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 6, 'autcentquo_group': '6.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': False, 'autcentquo_order': 6, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'S_3', 'cc_stats': [[1, 1, 1], [2, 3, 1], [3, 2, 1], [5, 1, 4], [10, 3, 4], [15, 2, 4]], 'center_label': '5.1', 'center_order': 5, 'central_product': True, 'central_quotient': '6.1', 'commutator_count': 1, 'commutator_label': '3.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '3.1', '5.1'], 'composition_length': 3, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['5.1', 1], ['6.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 3, 1, 1], [3, 2, 1, 1], [5, 1, 4, 1], [10, 3, 4, 1], [15, 2, 4, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 18, 'exponent': 30, 'exponents_of_order': [1, 1, 1], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3, 5], 'faithful_reps': [[2, 0, 4]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '30.1', 'hash': 1, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [2, 3], 'inner_gens': [[1, 22], [11, 2]], 'inner_hash': 1, 'inner_nilpotent': False, 'inner_order': 6, 'inner_split': True, 'inner_tex': 'S_3', 'inner_used': [1, 2], 'irrC_degree': 2, 'irrQ_degree': 8, 'irrQ_dim': 8, 'irrR_degree': 4, 'irrep_stats': [[1, 10], [2, 5]], 'label': '30.1', 'linC_count': 4, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 6, 'linQ_degree_count': 2, 'linQ_dim': 6, 'linQ_dim_count': 2, 'linR_count': 6, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C5*S3', 'ngens': 3, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 6, 'number_characteristic_subgroups': 6, 'number_conjugacy_classes': 15, 'number_divisions': 6, 'number_normal_subgroups': 6, 'number_subgroup_autclasses': 8, 'number_subgroup_classes': 8, 'number_subgroups': 12, 'old_label': None, 'order': 30, 'order_factorization_type': 11, 'order_stats': [[1, 1], [2, 3], [3, 2], [5, 4], [10, 12], [15, 8]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [4], 'outer_gen_pows': [0], 'outer_gens': [[1, 14]], 'outer_group': '4.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 4, 'outer_permdeg': 4, 'outer_perms': [9], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_4', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 8, 'pgroup': 0, 'primary_abelian_invariants': [2, 5], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 1], [4, 2], [8, 1]], 'representations': {'PC': {'code': 493959, 'gens': [1, 2], 'pres': [3, -2, -3, -5, 133, 22]}, 'GLZ': {'b': 3, 'd': 6, 'gens': [41624334336939899, 91793128562767237]}, 'GLFp': {'d': 2, 'p': 11, 'gens': [1618, 13311]}, 'Perm': {'d': 8, 'gens': [720, 33, 5760]}}, 'schur_multiplier': [], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [10], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_5\\times S_3', 'transitive_degree': 15, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '10.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 5, 'aut_exponent': 1320, 'aut_gen_orders': [2, 30, 4, 4, 3, 33], 'aut_gens': [[1, 10, 30], [1, 20, 300], [661, 340, 390], [1, 340, 710], [1, 660, 380], [331, 10, 30], [711, 10, 30]], 'aut_group': '47520.b', 'aut_hash': 4147157100757437592, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 47520, 'aut_permdeg': 20, 'aut_perms': [1808195308132965210, 1471408994146687380, 102126948835743801, 43794270459291319, 43441247281795503, 1043438637957603724], 'aut_phi_ratio': 198.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 9, 1, 1], [3, 2, 4, 1], [5, 11, 1, 4], [10, 99, 1, 4], [11, 5, 2, 1], [15, 22, 4, 4], [22, 45, 2, 1], [33, 10, 8, 1]], 'aut_supersolvable': False, 'aut_tex': 'F_{11}\\times C_3^2:\\GL(2,3)', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 1320, 'autcentquo_group': '47520.b', 'autcentquo_hash': 4147157100757437592, 'autcentquo_nilpotent': False, 'autcentquo_order': 47520, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'F_{11}\\times C_3^2:\\GL(2,3)', 'cc_stats': [[1, 1, 1], [2, 9, 1], [3, 2, 4], [5, 11, 4], [10, 99, 4], [11, 5, 2], [15, 22, 16], [22, 45, 2], [33, 10, 8]], 'center_label': '1.1', 'center_order': 1, 'central_product': True, 'central_quotient': '990.16', 'commutator_count': 1, 'commutator_label': '99.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '3.1', '3.1', '5.1', '11.1'], 'composition_length': 5, 'conjugacy_classes_known': True, 'counter': 16, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['18.4', 1], ['55.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 9, 1, 1], [3, 2, 1, 4], [5, 11, 4, 1], [10, 99, 4, 1], [11, 5, 2, 1], [15, 22, 4, 4], [22, 45, 2, 1], [33, 10, 2, 4]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 10416, 'exponent': 330, 'exponents_of_order': [2, 1, 1, 1], 'factors_of_aut_order': [2, 3, 5, 11], 'factors_of_order': [2, 3, 5, 11], 'faithful_reps': [], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '990.16', 'hash': 16, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 330, 'inner_gen_orders': [10, 3, 33], 'inner_gens': [[1, 20, 780], [21, 10, 30], [241, 10, 30]], 'inner_hash': 16, 'inner_nilpotent': False, 'inner_order': 990, 'inner_split': False, 'inner_tex': '(C_3\\times C_{33}):C_{10}', 'inner_used': [1, 2, 3], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 10], [2, 20], [5, 4], [10, 8]], 'label': '990.16', 'linC_count': 600, 'linC_degree': 9, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 14, 'linQ_degree_count': 12, 'linQ_dim': 14, 'linQ_dim_count': 12, 'linR_count': 12, 'linR_degree': 14, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': '(C3*C33):C10', 'ngens': 5, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 18, 'number_characteristic_subgroups': 9, 'number_conjugacy_classes': 42, 'number_divisions': 18, 'number_normal_subgroups': 21, 'number_subgroup_autclasses': 24, 'number_subgroup_classes': 48, 'number_subgroups': 392, 'old_label': None, 'order': 990, 'order_factorization_type': 222, 'order_stats': [[1, 1], [2, 9], [3, 8], [5, 44], [10, 396], [11, 10], [15, 352], [22, 90], [33, 80]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 12, 'outer_gen_orders': [2, 2, 3, 2, 2], 'outer_gen_pows': [0, 10, 5, 675, 5], 'outer_gens': [[1, 10, 980], [11, 10, 300], [1, 20, 710], [331, 330, 370], [1, 350, 50]], 'outer_group': '48.48', 'outer_hash': 48, 'outer_nilpotent': False, 'outer_order': 48, 'outer_permdeg': 6, 'outer_perms': [143, 127, 576, 126, 121], 'outer_solvable': True, 'outer_supersolvable': False, 'outer_tex': 'C_2\\times S_4', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 17, 'pgroup': 0, 'primary_abelian_invariants': [2, 5], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 4], [4, 2], [8, 4], [10, 2], [20, 4]], 'representations': {'PC': {'code': 6177879569382695549514503119, 'gens': [1, 3, 4], 'pres': [5, -2, -5, -3, -3, -11, 10, 302, 15603, 4808, 78, 9004, 5634]}, 'GLZN': {'d': 2, 'p': 66, 'gens': [287521, 433456, 12366023, 287893, 288949]}, 'Perm': {'d': 17, 'gens': [25, 1496082031920, 144, 243, 23733216460800]}}, 'schur_multiplier': [3], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [10], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': '(C_3\\times C_{33}):C_{10}', 'transitive_degree': 99, 'wreath_data': None, 'wreath_product': False}