Properties

Label 98304.m.4.M
Order $ 2^{13} \cdot 3 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^3.(C_4.\GL(2,\mathbb{Z}/4))$
Order: \(24576\)\(\medspace = 2^{13} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 3 & 6 \\ 6 & 13 \end{array}\right), \left(\begin{array}{rr} 27 & 13 \\ 28 & 17 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 0 & 7 \\ 9 & 31 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 9 & 24 \\ 16 & 25 \end{array}\right), \left(\begin{array}{rr} 9 & 16 \\ 16 & 25 \end{array}\right), \left(\begin{array}{rr} 17 & 16 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 16 & 17 \end{array}\right), \left(\begin{array}{rr} 25 & 0 \\ 8 & 9 \end{array}\right), \left(\begin{array}{rr} 31 & 24 \\ 24 & 31 \end{array}\right), \left(\begin{array}{rr} 21 & 16 \\ 4 & 29 \end{array}\right), \left(\begin{array}{rr} 13 & 28 \\ 8 & 5 \end{array}\right)$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_4^4.C_4^2:S_4$
Order: \(98304\)\(\medspace = 2^{15} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(12582912\)\(\medspace = 2^{22} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_5\wr C_2^2:C_4$, of order \(1572864\)\(\medspace = 2^{19} \cdot 3 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$(C_4^3\times C_8).\GL(2,\mathbb{Z}/4)$
Normal closure:$(C_4^3\times C_8).\GL(2,\mathbb{Z}/4)$
Core:$C_4^3.C_2^3:C_{24}$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed