Properties

Label 98304.m
Order \( 2^{15} \cdot 3 \)
Exponent \( 2^{4} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{5} \)
$\card{Z(G)}$ \( 2^{4} \)
$\card{\Aut(G)}$ \( 2^{22} \cdot 3 \)
$\card{\mathrm{Out}(G)}$ \( 2^{11} \)
Perm deg. not computed
Trans deg. not computed
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath (using Gap)

Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([16, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 32, 81, 1769987, 179, 370628, 4723205, 19989, 1770277, 357557, 444933, 34645, 495542, 172550, 255222, 326, 800823, 25671, 196183, 375, 640568, 223560, 327256, 41608, 614409, 46137, 161369, 180585, 100921, 45257, 473, 101434, 84570, 109930, 120506, 27594, 522, 147547, 73835, 41595, 18571, 6389772, 479292, 404444, 267180, 66268, 66908, 21788, 620, 1032253, 182877, 317293, 45821, 79437, 669, 23134, 103790, 5886, 26062, 614495, 209007, 153727, 52367]); a,b,c,d,e,f,g := Explode([G.1, G.4, G.6, G.7, G.10, G.13, G.16]); AssignNames(~G, ["a", "a2", "a4", "b", "b2", "c", "d", "d2", "d4", "e", "e2", "e4", "f", "f2", "f4", "g"]);
 
Copy content gap:G := PcGroupCode(301659309081422592335348874156419096682714126742016948391946051492526365999813764738370394104048228593681018874489997468260496971382951297033303913915295433553423967593565941415795131394220737856237032135119485464579587046756675578647272114722056218839959252154072594280240727097820534669132789247589162854570882964143224231086663505234632594591252608,98304); a := G.1; b := G.4; c := G.6; d := G.7; e := G.10; f := G.13; g := G.16;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(301659309081422592335348874156419096682714126742016948391946051492526365999813764738370394104048228593681018874489997468260496971382951297033303913915295433553423967593565941415795131394220737856237032135119485464579587046756675578647272114722056218839959252154072594280240727097820534669132789247589162854570882964143224231086663505234632594591252608,98304)'); a = G.1; b = G.4; c = G.6; d = G.7; e = G.10; f = G.13; g = G.16;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(301659309081422592335348874156419096682714126742016948391946051492526365999813764738370394104048228593681018874489997468260496971382951297033303913915295433553423967593565941415795131394220737856237032135119485464579587046756675578647272114722056218839959252154072594280240727097820534669132789247589162854570882964143224231086663505234632594591252608,98304)'); a = G.1; b = G.4; c = G.6; d = G.7; e = G.10; f = G.13; g = G.16;
 

Group information

Description:$C_4^4.C_4^2:S_4$
Order: \(98304\)\(\medspace = 2^{15} \cdot 3 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage:G.Order()
 
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage:G.Exponent()
 
Automorphism group:Group of order \(12582912\)\(\medspace = 2^{22} \cdot 3 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 15, $C_3$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 16 24 48
Elements 1 415 128 3168 896 16896 3072 45056 12288 16384 98304
Conjugacy classes   1 12 1 75 7 328 24 224 96 128 896
Divisions 1 12 1 51 5 150 8 42 16 8 294
Autjugacy classes 1 10 1 39 4 117 6 21 9 4 212

Minimal presentations

Permutation degree:not computed
Transitive degree:not computed
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none not computed none
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath (using Gap)


Presentation: ${\langle a, b, c, d, e, f, g \mid a^{8}=e^{8}=f^{8}=g^{2}=[a,d]=[a,g]=[b,g]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([16, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 32, 81, 1769987, 179, 370628, 4723205, 19989, 1770277, 357557, 444933, 34645, 495542, 172550, 255222, 326, 800823, 25671, 196183, 375, 640568, 223560, 327256, 41608, 614409, 46137, 161369, 180585, 100921, 45257, 473, 101434, 84570, 109930, 120506, 27594, 522, 147547, 73835, 41595, 18571, 6389772, 479292, 404444, 267180, 66268, 66908, 21788, 620, 1032253, 182877, 317293, 45821, 79437, 669, 23134, 103790, 5886, 26062, 614495, 209007, 153727, 52367]); a,b,c,d,e,f,g := Explode([G.1, G.4, G.6, G.7, G.10, G.13, G.16]); AssignNames(~G, ["a", "a2", "a4", "b", "b2", "c", "d", "d2", "d4", "e", "e2", "e4", "f", "f2", "f4", "g"]);
 
Copy content gap:G := PcGroupCode(301659309081422592335348874156419096682714126742016948391946051492526365999813764738370394104048228593681018874489997468260496971382951297033303913915295433553423967593565941415795131394220737856237032135119485464579587046756675578647272114722056218839959252154072594280240727097820534669132789247589162854570882964143224231086663505234632594591252608,98304); a := G.1; b := G.4; c := G.6; d := G.7; e := G.10; f := G.13; g := G.16;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(301659309081422592335348874156419096682714126742016948391946051492526365999813764738370394104048228593681018874489997468260496971382951297033303913915295433553423967593565941415795131394220737856237032135119485464579587046756675578647272114722056218839959252154072594280240727097820534669132789247589162854570882964143224231086663505234632594591252608,98304)'); a = G.1; b = G.4; c = G.6; d = G.7; e = G.10; f = G.13; g = G.16;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(301659309081422592335348874156419096682714126742016948391946051492526365999813764738370394104048228593681018874489997468260496971382951297033303913915295433553423967593565941415795131394220737856237032135119485464579587046756675578647272114722056218839959252154072594280240727097820534669132789247589162854570882964143224231086663505234632594591252608,98304)'); a = G.1; b = G.4; c = G.6; d = G.7; e = G.10; f = G.13; g = G.16;
 
Matrix group:$\left\langle \left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 1 & 24 \\ 8 & 25 \end{array}\right), \left(\begin{array}{rr} 19 & 12 \\ 4 & 3 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 28 & 11 \\ 25 & 3 \end{array}\right), \left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 16 & 17 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 7 & 12 \\ 4 & 3 \end{array}\right), \left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 3 & 1 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 19 & 26 \\ 10 & 9 \end{array}\right), \left(\begin{array}{rr} 29 & 28 \\ 20 & 21 \end{array}\right) \right\rangle \subseteq \GL_{2}(\Z/32\Z)$
Copy content comment:Define the group as a matrix group with coefficients in GLZq
 
Copy content magma:G := MatrixGroup< 2, Integers(32) | [[1, 8, 0, 1], [17, 0, 0, 17], [1, 24, 8, 25], [19, 12, 4, 3], [1, 16, 0, 1], [9, 0, 0, 9], [28, 11, 25, 3], [3, 0, 0, 3], [1, 16, 16, 17], [9, 0, 0, 1], [7, 12, 4, 3], [1, 4, 0, 1], [17, 0, 0, 1], [3, 1, 0, 1], [19, 26, 10, 9], [29, 28, 20, 21]] >;
 
Copy content gap:G := Group([[[ZmodnZObj(1,32), ZmodnZObj(8,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]],[[ZmodnZObj(17,32), ZmodnZObj(0,32)], [ZmodnZObj(0,32), ZmodnZObj(17,32)]],[[ZmodnZObj(1,32), ZmodnZObj(24,32)], [ZmodnZObj(8,32), ZmodnZObj(25,32)]],[[ZmodnZObj(19,32), ZmodnZObj(12,32)], [ZmodnZObj(4,32), ZmodnZObj(3,32)]],[[ZmodnZObj(1,32), ZmodnZObj(16,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]],[[ZmodnZObj(9,32), ZmodnZObj(0,32)], [ZmodnZObj(0,32), ZmodnZObj(9,32)]],[[ZmodnZObj(28,32), ZmodnZObj(11,32)], [ZmodnZObj(25,32), ZmodnZObj(3,32)]],[[ZmodnZObj(3,32), ZmodnZObj(0,32)], [ZmodnZObj(0,32), ZmodnZObj(3,32)]],[[ZmodnZObj(1,32), ZmodnZObj(16,32)], [ZmodnZObj(16,32), ZmodnZObj(17,32)]],[[ZmodnZObj(9,32), ZmodnZObj(0,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]],[[ZmodnZObj(7,32), ZmodnZObj(12,32)], [ZmodnZObj(4,32), ZmodnZObj(3,32)]],[[ZmodnZObj(1,32), ZmodnZObj(4,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]],[[ZmodnZObj(17,32), ZmodnZObj(0,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]],[[ZmodnZObj(3,32), ZmodnZObj(1,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]],[[ZmodnZObj(19,32), ZmodnZObj(26,32)], [ZmodnZObj(10,32), ZmodnZObj(9,32)]],[[ZmodnZObj(29,32), ZmodnZObj(28,32)], [ZmodnZObj(20,32), ZmodnZObj(21,32)]]]);
 
Copy content sage:MS = MatrixSpace(Integers(32), 2, 2) G = MatrixGroup([MS([[1, 8], [0, 1]]), MS([[17, 0], [0, 17]]), MS([[1, 24], [8, 25]]), MS([[19, 12], [4, 3]]), MS([[1, 16], [0, 1]]), MS([[9, 0], [0, 9]]), MS([[28, 11], [25, 3]]), MS([[3, 0], [0, 3]]), MS([[1, 16], [16, 17]]), MS([[9, 0], [0, 1]]), MS([[7, 12], [4, 3]]), MS([[1, 4], [0, 1]]), MS([[17, 0], [0, 1]]), MS([[3, 1], [0, 1]]), MS([[19, 26], [10, 9]]), MS([[29, 28], [20, 21]])])
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_4^3.C_8^2)$ . $S_4$ $C_4^4$ . $(C_4^2:S_4)$ $(C_2\times C_8^2.D_8)$ . $D_{24}$ $(C_4^4.C_8)$ . $(C_2\times S_4)$ (2) all 221

Elements of the group are displayed as matrices in $\GL_{2}(\Z/{32}\Z)$.

Homology

Abelianization: $C_{2}^{2} \times C_{8} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{2} \times C_{4}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage:G.AllSubgroups()
 

There are 323 normal subgroups (279 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2\times C_8$ $G/Z \simeq$ $C_8^2.C_{24}.C_2^2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage:G.Center()
 
Commutator: $G' \simeq$ $C_4^3.(C_4\times A_4)$ $G/G' \simeq$ $C_2^2\times C_8$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2\times C_4^3\times C_8$ $G/\Phi \simeq$ $C_2^2\times S_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $(C_4^3\times C_8).C_2^5$ $G/\operatorname{Fit} \simeq$ $S_3$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_4^4.C_4^2:S_4$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^4$ $G/\operatorname{soc} \simeq$ $C_4^2:C_3.C_8^2.C_2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $(C_2^3\times C_8^2).D_4^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$

Subgroup diagram and profile

Series

Derived series $C_4^4.C_4^2:S_4$ $\rhd$ $C_4^3.(C_4\times A_4)$ $\rhd$ $C_2.C_8^2$ $\rhd$ $C_2$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage:G.DerivedSeriesOfGroup()
 
Chief series $C_4^4.C_4^2:S_4$ $\rhd$ $C_4^3.(A_4\times C_8^2)$ $\rhd$ $C_4^4.(C_2^3\times A_4)$ $\rhd$ $C_4^4.(C_4\times A_4)$ $\rhd$ $C_2^3.C_4^2.(C_4\times C_{12})$ $\rhd$ $C_4^4.A_4$ $\rhd$ $C_2\times C_4^3.A_4$ $\rhd$ $C_2\times C_4^2.\SL(2,3)$ $\rhd$ $C_4^2.\SL(2,3)$ $\rhd$ $C_2.C_8^2$ $\rhd$ $C_2\times C_4^2$ $\rhd$ $C_4^2$ $\rhd$ $C_2^2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage:G.ChiefSeries()
 
Lower central series $C_4^4.C_4^2:S_4$ $\rhd$ $C_4^3.(C_4\times A_4)$ $\rhd$ $C_4^3.A_4$ $\rhd$ $C_4^2.\SL(2,3)$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2\times C_8$ $\lhd$ $C_2^2\times C_8$ $\lhd$ $C_2\times C_4\times C_8$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $896 \times 896$ character table is not available for this group.

Rational character table

The $294 \times 294$ rational character table is not available for this group.