Subgroup ($H$) information
Description: | $C_4^3.C_2^3:C_{24}$ |
Order: | \(12288\)\(\medspace = 2^{12} \cdot 3 \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Generators: |
$\left(\begin{array}{rr}
3 & 6 \\
6 & 13
\end{array}\right), \left(\begin{array}{rr}
23 & 8 \\
24 & 7
\end{array}\right), \left(\begin{array}{rr}
17 & 16 \\
0 & 17
\end{array}\right), \left(\begin{array}{rr}
24 & 31 \\
25 & 7
\end{array}\right), \left(\begin{array}{rr}
29 & 12 \\
8 & 21
\end{array}\right), \left(\begin{array}{rr}
9 & 0 \\
0 & 9
\end{array}\right), \left(\begin{array}{rr}
9 & 16 \\
8 & 25
\end{array}\right), \left(\begin{array}{rr}
9 & 16 \\
16 & 25
\end{array}\right), \left(\begin{array}{rr}
17 & 0 \\
16 & 17
\end{array}\right), \left(\begin{array}{rr}
17 & 0 \\
0 & 17
\end{array}\right), \left(\begin{array}{rr}
13 & 0 \\
0 & 13
\end{array}\right), \left(\begin{array}{rr}
9 & 24 \\
16 & 25
\end{array}\right), \left(\begin{array}{rr}
29 & 24 \\
4 & 21
\end{array}\right)$
|
Derived length: | $3$ |
The subgroup is characteristic (hence normal), nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.
Ambient group ($G$) information
Description: | $C_4^4.C_4^2:S_4$ |
Order: | \(98304\)\(\medspace = 2^{15} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
Description: | $D_4$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Automorphism Group: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | Group of order \(12582912\)\(\medspace = 2^{22} \cdot 3 \) |
$\operatorname{Aut}(H)$ | $C_5:D_5^3.C_2^3$, of order \(4718592\)\(\medspace = 2^{19} \cdot 3^{2} \) |
$W$ | $C_8^2:(C_2\times D_6)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
Related subgroups
Centralizer: | not computed |
Normalizer: | $C_4^4.C_4^2:S_4$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | not computed |