Properties

Label 96800.c.25.a1
Order $ 2^{5} \cdot 11^{2} $
Index $ 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_{11}\times C_{44}).D_4$
Order: \(3872\)\(\medspace = 2^{5} \cdot 11^{2} \)
Index: \(25\)\(\medspace = 5^{2} \)
Exponent: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Generators: $a^{5}, cd^{60}, d^{55}, b^{2}c^{3}, b, d^{20}, d^{110}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_{11}^2:C_8:C_{10}^2$
Order: \(96800\)\(\medspace = 2^{5} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_5^2$
Order: \(25\)\(\medspace = 5^{2} \)
Exponent: \(5\)
Automorphism Group: $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Outer Automorphisms: $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{11}\times C_{55}).C_2^3.C_{10}.C_2^6$
$\operatorname{Aut}(H)$ $C_{11}^2.C_2^3.C_5.C_2^5$
$W$$C_2\times D_{11}^2:C_{10}$, of order \(9680\)\(\medspace = 2^{4} \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{11}^2:C_8:C_{10}^2$
Complements:$C_5^2$
Minimal over-subgroups:$(C_{11}\times C_{220}).D_4$$C_{11}^2:(C_{10}\times \SD_{16})$
Maximal under-subgroups:$C_{11}^2:\SD_{16}$$C_{44}:D_{22}$$C_{44}.D_{22}$$C_{11}^2:(C_2\times C_8)$$C_2\times \SD_{16}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$5$
Projective image not computed