Properties

Label 96800.c.9680.a1
Order $ 2 \cdot 5 $
Index $ 2^{4} \cdot 5 \cdot 11^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(9680\)\(\medspace = 2^{4} \cdot 5 \cdot 11^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $d^{110}, d^{44}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and cyclic (hence elementary ($p = 2,5$), hyperelementary, metacyclic, and a Z-group).

Ambient group ($G$) information

Description: $C_{11}^2:C_8:C_{10}^2$
Order: \(96800\)\(\medspace = 2^{5} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times D_{11}^2:C_{10}$
Order: \(9680\)\(\medspace = 2^{4} \cdot 5 \cdot 11^{2} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Automorphism Group: $C_{11}^2.(C_2\times C_{20}).C_2^3$
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{11}\times C_{55}).C_2^3.C_{10}.C_2^6$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{11}^2:C_8:C_{10}^2$
Normalizer:$C_{11}^2:C_8:C_{10}^2$
Minimal over-subgroups:$C_{110}$$C_{110}$$C_{110}$$C_{110}$$C_5\times C_{10}$$C_{20}$$C_2\times C_{10}$$C_2\times C_{10}$$C_{20}$$C_{20}$
Maximal under-subgroups:$C_5$$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_2\times D_{11}^2:C_{10}$