Properties

Label 960.9542.8.w1.a1
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}:D_4$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $ac^{3}, c^{12}, c^{8}, bc^{3}d^{5}, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{60}.C_2^4$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2^3.C_2^6.C_2)$
$\operatorname{Aut}(H)$ $C_2\times D_6\times F_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_2\times D_6\times F_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_6\times D_{10}$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{12}.D_{10}$
Normal closure:$D_{20}:S_3$
Core:$S_3\times C_{10}$
Minimal over-subgroups:$D_{20}:S_3$$D_6.D_{10}$$D_{12}:D_5$
Maximal under-subgroups:$S_3\times C_{10}$$C_3\times D_{10}$$C_{15}:C_4$$C_5:D_4$$C_3:D_4$
Autjugate subgroups:960.9542.8.w1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{30}:C_2^3$