Properties

Label 960.9542.4.m1.a1
Order $ 2^{4} \cdot 3 \cdot 5 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{20}:S_3$
Order: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $ac^{3}, d^{2}, c^{6}, c^{12}, bc^{3}d^{5}, c^{8}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{60}.C_2^4$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2^3.C_2^6.C_2)$
$\operatorname{Aut}(H)$ $D_4\times D_6\times F_5$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$D_4\times D_6\times F_5$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_{30}:C_2^3$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{60}.C_2^4$
Complements:$C_2^2$ $C_2^2$
Minimal over-subgroups:$D_{12}.D_{10}$$D_{20}:D_6$$D_{12}.D_{10}$
Maximal under-subgroups:$S_3\times C_{20}$$C_3\times D_{20}$$C_{15}:Q_8$$C_{15}:D_4$$C_6.D_{10}$$D_{20}:C_2$$D_4:S_3$
Autjugate subgroups:960.9542.4.m1.b1

Other information

Möbius function$2$
Projective image$D_{30}:C_2^3$