Subgroup ($H$) information
| Description: | $C_5:C_8$ |
| Order: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Exponent: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Generators: |
$abc, d^{10}, d^{4}, d^{15}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
| Description: | $(C_5\times Q_8).D_{12}$ |
| Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(A_4\times F_5).C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \) |
| $\operatorname{res}(S)$ | $C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) |
| $W$ | $D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Related subgroups
| Centralizer: | $C_2\times C_4$ | ||
| Normalizer: | $C_{10}:Q_{16}$ | ||
| Normal closure: | $Q_8.D_{30}$ | ||
| Core: | $C_{10}$ | ||
| Minimal over-subgroups: | $C_{10}:C_8$ | $C_5:Q_{16}$ | $C_5:Q_{16}$ |
| Maximal under-subgroups: | $C_{20}$ | $C_8$ |
Other information
| Number of subgroups in this conjugacy class | $6$ |
| Möbius function | $0$ |
| Projective image | $(C_2\times C_{10}):D_{12}$ |