Properties

Label 960.5792.120.b1.a1
Order $ 2^{3} $
Index $ 2^{3} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $b^{6}, c$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $(C_5\times Q_8).D_{12}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(A_4\times F_5).C_2^5$
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(1280\)\(\medspace = 2^{8} \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{20}.D_4$
Normalizer:$(C_2\times C_8).D_{10}$
Normal closure:$C_2\times Q_8$
Core:$C_2^2$
Minimal over-subgroups:$C_2\times C_{20}$$C_2\times Q_8$$C_4^2$$C_2\times Q_8$$C_4:C_4$$C_2\times Q_8$$C_2\times C_8$$C_2\times C_8$
Maximal under-subgroups:$C_2^2$$C_4$$C_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$D_5\times S_4$