Properties

Label 960.2954.8.o1.a1
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5\times C_{12}$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $a, d^{4}, d^{6}, d^{3}, c^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $(C_{12}\times D_{10}):C_4$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2^8.C_2^5)$
$\operatorname{Aut}(H)$ $C_2^3\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$\card{W}$\(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_2^2\times C_{12}$
Normalizer:$C_{60}:C_2^3$
Normal closure:$C_{12}\times D_{10}$
Core:$C_{60}$
Minimal over-subgroups:$C_{12}\times D_{10}$$C_{12}\times D_{10}$$C_{12}\times D_{10}$
Maximal under-subgroups:$C_{60}$$C_3\times D_{10}$$C_5:C_{12}$$C_4\times D_5$$C_2\times C_{12}$
Autjugate subgroups:960.2954.8.o1.b1960.2954.8.o1.c1960.2954.8.o1.d1960.2954.8.o1.e1960.2954.8.o1.f1960.2954.8.o1.g1960.2954.8.o1.h1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed