Subgroup ($H$) information
| Description: | $C_{12}\times D_{10}$ |
| Order: | \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Generators: |
$a, c^{4}, d^{3}, d^{4}, bc^{10}, d^{6}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $(C_{12}\times D_{10}):C_4$ |
| Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{15}:(C_2^8.C_2^5)$ |
| $\operatorname{Aut}(H)$ | $C_2^3:D_4\times F_5$, of order \(1280\)\(\medspace = 2^{8} \cdot 5 \) |
| $\card{W}$ | \(10\)\(\medspace = 2 \cdot 5 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $2$ |
| Möbius function | not computed |
| Projective image | not computed |