Properties

Label 960.2954.40.m1.a1
Order $ 2^{3} \cdot 3 $
Index $ 2^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{12}$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, d^{3}, d^{4}, d^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $(C_{12}\times D_{10}):C_4$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2^8.C_2^5)$
$\operatorname{Aut}(H)$ $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{W}$$1$

Related subgroups

Centralizer:$C_2^3\times C_{12}$
Normalizer:$C_2^3\times C_{12}$
Normal closure:$C_{12}\times D_{10}$
Core:$C_{12}$
Minimal over-subgroups:$D_5\times C_{12}$$C_2^2\times C_{12}$$C_2^2\times C_{12}$$C_2^2\times C_{12}$
Maximal under-subgroups:$C_{12}$$C_2\times C_6$$C_{12}$$C_2\times C_4$
Autjugate subgroups:960.2954.40.m1.b1960.2954.40.m1.c1960.2954.40.m1.d1960.2954.40.m1.e1960.2954.40.m1.f1960.2954.40.m1.g1960.2954.40.m1.h1

Other information

Number of subgroups in this conjugacy class$10$
Möbius function not computed
Projective image not computed