-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'ambient': '960.2954', 'ambient_counter': 2954, 'ambient_order': 960, 'ambient_tex': '(C_{12}\\times D_{10}):C_4', 'central': False, 'central_factor': False, 'centralizer_order': 96, 'characteristic': False, 'core_order': 12, 'counter': 247, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '960.2954.40.m1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': False, 'old_label': '40.m1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 40, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '24.9', 'subgroup_hash': 9, 'subgroup_order': 24, 'subgroup_tex': 'C_2\\times C_{12}', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '960.2954', 'aut_centralizer_order': None, 'aut_label': '40.m1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '10.b1.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['8.o1.a1', '20.f1.a1', '20.h1.a1', '20.i1.a1'], 'contains': ['80.d1.a1', '80.i1.a1', '80.j1.a1', '120.m1.a1'], 'core': '80.d1.a1', 'coset_action_label': None, 'count': 10, 'diagramx': None, 'generators': [1, 240, 320, 480], 'label': '960.2954.40.m1.a1', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': '4.f1.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '10.b1.a1', 'old_label': '40.m1.a1', 'projective_image': None, 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '40.m1.a1', 'subgroup_fusion': None, 'weyl_group': None}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '24.9', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 4, 'aut_gen_orders': [2, 2, 2, 2], 'aut_gens': [[1, 2], [13, 2], [1, 23], [1, 10], [1, 14]], 'aut_group': '16.11', 'aut_hash': 11, 'aut_nilpotency_class': 2, 'aut_nilpotent': True, 'aut_order': 16, 'aut_permdeg': 6, 'aut_perms': [288, 6, 127, 126], 'aut_phi_ratio': 2.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [3, 1, 2, 1], [4, 1, 4, 1], [6, 1, 2, 1], [6, 1, 4, 1], [12, 1, 8, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2\\times D_4', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '16.11', 'autcent_hash': 11, 'autcent_nilpotent': True, 'autcent_order': 16, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2\\times D_4', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 3], [3, 1, 2], [4, 1, 4], [6, 1, 6], [12, 1, 8]], 'center_label': '24.9', 'center_order': 24, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '3.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 9, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['3.1', 1], ['4.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [3, 1, 2, 1], [4, 1, 2, 2], [6, 1, 2, 3], [12, 1, 4, 2]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 12, 'exponent': 12, 'exponents_of_order': [3, 1], 'factors_of_aut_order': [2], 'factors_of_order': [2, 3], 'faithful_reps': [], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '12.5', 'hash': 9, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1], 'inner_gens': [[1, 2], [1, 2]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 24]], 'label': '24.9', 'linC_count': 96, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 4, 'linQ_degree_count': 4, 'linQ_dim': 4, 'linQ_dim_count': 4, 'linR_count': 8, 'linR_degree': 3, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C2*C12', 'ngens': 4, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 8, 'number_characteristic_subgroups': 8, 'number_conjugacy_classes': 24, 'number_divisions': 12, 'number_normal_subgroups': 16, 'number_subgroup_autclasses': 12, 'number_subgroup_classes': 16, 'number_subgroups': 16, 'old_label': None, 'order': 24, 'order_factorization_type': 31, 'order_stats': [[1, 1], [2, 3], [3, 2], [4, 4], [6, 6], [12, 8]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 2, 2], 'outer_gen_pows': [0, 0, 0, 0], 'outer_gens': [[13, 2], [1, 23], [1, 10], [1, 14]], 'outer_group': '16.11', 'outer_hash': 11, 'outer_nilpotent': True, 'outer_order': 16, 'outer_permdeg': 6, 'outer_perms': [288, 6, 127, 126], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2\\times D_4', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 9, 'pgroup': 0, 'primary_abelian_invariants': [2, 4, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 6], [4, 2]], 'representations': {'PC': {'code': 221281, 'gens': [1, 2], 'pres': [4, -2, -2, -2, -3, 21, 34]}, 'GLZ': {'b': 3, 'd': 4, 'gens': [35931072, 26129103]}, 'GLFp': {'d': 2, 'p': 13, 'gens': [10993, 4396]}, 'Perm': {'d': 9, 'gens': [2400, 40320, 4, 744]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 12], 'solvability_type': 1, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2\\times C_{12}', 'transitive_degree': 24, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.10', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 60, 'aut_gen_orders': [20, 10, 6, 4, 2, 4, 10, 2, 2, 6], 'aut_gens': [[1, 2, 4, 80], [553, 2, 86, 402], [497, 2, 46, 442], [41, 2, 646, 82], [25, 2, 598, 442], [545, 2, 356, 920], [491, 2, 854, 922], [539, 2, 244, 560], [545, 2, 198, 400], [483, 2, 404, 880], [523, 2, 398, 562]], 'aut_group': None, 'aut_hash': 352979904559946459, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 122880, 'aut_permdeg': 88, 'aut_perms': [166609098459525663583776391705517493078022005787867493587491805782948057851526601594033742717619046674014855982085802464049129235526935, 54150703715441451972728470354695437544367825920513899954029210455859024693891392787528667210191294098190245932837236872943163642810074, 16746878886203071429721000706986325342493330074557097966099661359530810332914502800558432539761094557905910131996093069734109445011490, 51926597938016106022467523574045234037712628356894435549138822691216348482285852430052790526213167376044152723808862000766696907365211, 183206080297147942996330810936103924425866287851119216618018971570660785841305851636057303543811984301681152571959190291129215030937756, 87667935933713113132842711811801088112712208990768182979992004655771561836333226016080200943202529053849195392403187888201521285732474, 26774764803395714657044058826206475177298169099730144754406519109760179427803757457132152558268757013548317942759732055155240573187466, 98884516648871118320038869410487833023851332956750100553848465628551871374955570603660948132815113159596832556560257140943611228538831, 144437403505080280547131142785637804798547377199017288943775519406815557343392149519427278267525377064623326607589433637234559446956315, 47271728876499221433490303297490501015140579975052917726071670491960262276647801084239079766670458438609250672936667643977192472099798], 'aut_phi_ratio': 480.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 7], [2, 10, 4, 1], [3, 2, 1, 1], [4, 2, 4, 1], [4, 10, 4, 1], [4, 12, 4, 1], [4, 60, 4, 1], [5, 2, 2, 1], [6, 2, 1, 7], [6, 10, 8, 1], [10, 2, 2, 7], [12, 2, 8, 1], [12, 10, 8, 1], [15, 4, 2, 1], [20, 4, 8, 1], [20, 12, 16, 1], [30, 4, 2, 7], [60, 4, 16, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{15}:(C_2^8.C_2^5)', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '512.10494213', 'autcent_hash': 1718285292446712970, 'autcent_nilpotent': True, 'autcent_order': 512, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^9', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 60, 'autcentquo_group': '240.195', 'autcentquo_hash': 195, 'autcentquo_nilpotent': False, 'autcentquo_order': 240, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'D_6\\times F_5', 'cc_stats': [[1, 1, 1], [2, 1, 7], [2, 10, 4], [3, 2, 1], [4, 2, 4], [4, 10, 4], [4, 12, 4], [4, 60, 4], [5, 2, 2], [6, 2, 7], [6, 10, 8], [10, 2, 14], [12, 2, 8], [12, 10, 8], [15, 4, 2], [20, 4, 8], [20, 12, 16], [30, 4, 14], [60, 4, 16]], 'center_label': '8.5', 'center_order': 8, 'central_product': False, 'central_quotient': '120.42', 'commutator_count': 1, 'commutator_label': '60.13', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '5.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 2954, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 7], [2, 10, 1, 4], [3, 2, 1, 1], [4, 2, 1, 4], [4, 10, 2, 2], [4, 12, 2, 2], [4, 60, 2, 2], [5, 2, 2, 1], [6, 2, 1, 7], [6, 10, 2, 4], [10, 2, 2, 7], [12, 2, 2, 4], [12, 10, 4, 2], [15, 4, 2, 1], [20, 4, 2, 4], [20, 12, 8, 2], [30, 4, 2, 7], [60, 4, 4, 4]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 2016, 'exponent': 60, 'exponents_of_order': [6, 1, 1], 'factors_of_aut_order': [2, 3, 5], 'factors_of_order': [2, 3, 5], 'faithful_reps': [], 'familial': False, 'frattini_label': '8.5', 'frattini_quotient': '120.42', 'hash': 2954, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 30, 'inner_gen_orders': [2, 1, 10, 6], 'inner_gens': [[1, 2, 38, 80], [1, 2, 4, 80], [51, 2, 4, 880], [1, 2, 164, 80]], 'inner_hash': 42, 'inner_nilpotent': False, 'inner_order': 120, 'inner_split': False, 'inner_tex': 'S_3\\times D_{10}', 'inner_used': [1, 3, 4], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 16], [2, 76], [4, 40]], 'label': '960.2954', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': '(C12*D10):C4', 'ngens': 8, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 43, 'number_characteristic_subgroups': 78, 'number_conjugacy_classes': 132, 'number_divisions': 66, 'number_normal_subgroups': 160, 'number_subgroup_autclasses': 260, 'number_subgroup_classes': 468, 'number_subgroups': 2376, 'old_label': None, 'order': 960, 'order_factorization_type': 311, 'order_stats': [[1, 1], [2, 47], [3, 2], [4, 336], [5, 4], [6, 94], [10, 28], [12, 96], [15, 8], [20, 224], [30, 56], [60, 64]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 4, 4, 2, 2, 2, 4], 'outer_gen_pows': [320, 640, 320, 0, 16, 16, 48, 640], 'outer_gens': [[505, 2, 878, 600], [513, 2, 238, 560], [49, 2, 652, 560], [481, 2, 550, 400], [537, 2, 684, 440], [19, 2, 204, 442], [49, 2, 326, 920], [33, 2, 638, 600]], 'outer_group': None, 'outer_hash': 8224544021644802449, 'outer_nilpotent': True, 'outer_order': 1024, 'outer_permdeg': 256, 'outer_perms': [623561146794080722568634388835107890441382704773623208916265198755277715118881753790455642170840197080565055027929198487432490952272166849290878125963247886947423661370869772854605497814823749745120131433673961235536787114858702986268662535951545117751638299124977182227005125962028061777796245553481872928265608482044293420365765765498648252084203831250577351760788966391711932692551144074078409297019913113460592547809818082498538202164799225798538507901740855458623001863552935447296458855083733119380397, 658268921435874743395148333069680059615739693275096617380230158831258676922643618072164463872776349845910862249061448666976907150752156733087633760341975181880464925288477868693076427645284344033358619210884400190920120499614416098621546965661944140018711164022141774375894029327236287389803375529066174055410854026988027543409402934742912939440400804275910145964679694978063183014141666953761186503086017683578636248575010104164029679791748478210726434895084833522406779975249648224945055263434963022169583, 725630070560873695608495397971645129948459029479832114971254209491047095492873155855558608381103356909769800335525598598845123170849371186054041039957503311894133529974669198776376633236458239211281451896691781918612587056159121798895127902503497528271897457099569718662818679700597778806258925353045170802250183404788383325553125469456602047385602944351394643226857187644514815115771060789789255603009607535597581315861832607183688977256157343547540125396867800441712774795514646536421053116929293633673019, 755509736826369950661558305570420100557531699247080398268836868848981297526628248520695478377711044111234805731043504866885346103838307835879432313864540777443568982892483182220448038300193494607253698783215870212561194164356263006747099028660949604554856714865281876907918792388128530522763238844059003504868373622106622324581685012752658645442318160248844034049429762449980107464215888331084817662315158520875749313493500366333118201397026368711848656427194037511959997801376182682351881215363988952432214, 846275160085070077345812502885396293110684871821583257870158999604615128136376952502046226805165335109976374459197087613214667658413638768599652625720104616011875082542317400703845361457294765140981938831907594560262826575335910812495712025614648185823006414396967958462084147382872903042872365085733249022811511760558650909125691985793524524610824367137646566091292864466530401933343914409105257971246463715929639755002926714310769800881215210843069196375894992016709327113714737200124861682524282880000, 682582169635172567782624201217932482420751615832300779163619957519646979105116106511843923055847287208125788594279688971959564161538805638713617080968645243455029140182959133815622409361827601330428800692659074339677226598828622146577483538716033353979851036552217121839675044235411108181781535549404606310413110651639039522699327160245548303162995499583476282426330004116074363771878841234291222973408278122347881471446721374763072267874475767196120202559673683345627309383256055906219773200639882052771108, 702189844452777071589400362387785090903652085391960179112023713625572276654106769762139825214071005012263882170404633290416693014190196304843501432001975705614795286447892193011896470839535401297836884348045018252628418015517277072689370239753932060303875641014932786831627848711012387848103692396799461260004869696556707015865932972170402864684212052779632206787684375203934037306343580046752739276794788544787791001621114450833331218288006878911540591927273744177348648902308398823841597946725816478539545, 235351865638911850447227805744527148268308502729748489397339327209518844543378187148118094466881827883227441406146171143301725877077588027775830272601520449641815643721619608020104141247318458960215726025155802982710377050145848478287894255766683704684767967629491955208189185853749006173593177199033938723866756911704410727962459197788570186168680346303214471188733674499400132504446620733100887103765436591294551750731782260109598162351014796134526914927704081151228419752720273333093275870633017062144656], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^4.C_2^6', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 20, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 4], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 20], [4, 14], [8, 20], [16, 4]], 'representations': {'PC': {'code': 1562705296696555529473398322988441787957441, 'gens': [1, 2, 3, 6], 'pres': [8, -2, -2, 2, -2, -5, -2, -2, -3, 914, 66, 2307, 91, 2564, 10581, 141, 11222, 166, 10263]}, 'GLZN': {'d': 2, 'p': 60, 'gens': [216721, 10695271, 10584049, 3006023, 8929201, 6858916, 8856041, 4104019]}, 'Perm': {'d': 20, 'gens': [21009968184365, 6446922295161609, 961632016, 21009968179216, 16, 1520467200, 128047474114560000, 50520]}}, 'schur_multiplier': [2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 4], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': '(C_{12}\\times D_{10}):C_4', 'transitive_degree': 480, 'wreath_data': None, 'wreath_product': False}