Properties

Label 960.1920.20.i1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{24}$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $ac^{15}, c^{60}, b^{2}, c^{80}, c^{90}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{24}:D_{20}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^7\times S_3\times F_5$
$\operatorname{Aut}(H)$ $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
$\operatorname{res}(S)$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(192\)\(\medspace = 2^{6} \cdot 3 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{24}$
Normalizer:$C_{24}:D_4$
Normal closure:$C_{10}:C_{24}$
Core:$C_2\times C_{12}$
Minimal over-subgroups:$C_{10}:C_{24}$$C_6\times \OD_{16}$$D_6:C_8$$C_{12}.D_4$
Maximal under-subgroups:$C_2\times C_{12}$$C_{24}$$C_2\times C_8$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$-2$
Projective image$S_3\times D_{10}$