Subgroup ($H$) information
| Description: | $C_2\times C_{12}$ | 
| Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Index: | \(40\)\(\medspace = 2^{3} \cdot 5 \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Generators: | 
		
    $b^{2}, c^{30}, c^{80}, c^{60}$
    
    
    
         | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_{24}:D_{20}$ | 
| Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) | 
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2\times D_{10}$ | 
| Order: | \(40\)\(\medspace = 2^{3} \cdot 5 \) | 
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) | 
| Automorphism Group: | $F_5\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) | 
| Outer Automorphisms: | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| Nilpotency class: | $-1$ | 
| Derived length: | $2$ | 
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^7\times S_3\times F_5$ | 
| $\operatorname{Aut}(H)$ | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \) | 
| $W$ | $C_2$, of order \(2\) | 
Related subgroups
Other information
| Möbius function | $40$ | 
| Projective image | $S_3\times D_{10}$ |