Subgroup ($H$) information
| Description: | $D_{10}.C_2^4$ |
| Order: | \(320\)\(\medspace = 2^{6} \cdot 5 \) |
| Index: | \(3\) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Generators: |
$a, c^{10}, c^{5}, d^{3}, b, c^{4}, b^{2}$
|
| Derived length: | $2$ |
The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $C_2^2\times D_{10}.D_6$ |
| Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^4.C_2^4.C_{15}.D_6.C_2^2$ |
| $\operatorname{Aut}(H)$ | $F_5\times C_2^6:(C_2\times S_4)$, of order \(61440\)\(\medspace = 2^{12} \cdot 3 \cdot 5 \) |
| $\operatorname{res}(S)$ | $F_5\times C_2^6:S_4$, of order \(30720\)\(\medspace = 2^{11} \cdot 3 \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $3$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-1$ |
| Projective image | $S_3\times F_5$ |