Properties

Label 960.10958.48.k1.b2
Order $ 2^{2} \cdot 5 $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $ac^{4}e^{10}, e^{4}, bcd$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $\GL(2,3):D_{10}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times D_5\times A_4).C_2^5$
$\operatorname{Aut}(H)$ $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\card{W}$\(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^2\times D_{10}$
Normal closure:$\GL(2,3):D_5$
Core:$C_5$
Minimal over-subgroups:$C_2\times D_{10}$$C_2\times D_{10}$$C_2\times D_{10}$
Maximal under-subgroups:$C_{10}$$D_5$$D_5$$C_2^2$
Autjugate subgroups:960.10958.48.k1.a1960.10958.48.k1.a2960.10958.48.k1.b1960.10958.48.k1.c1960.10958.48.k1.c2960.10958.48.k1.d1960.10958.48.k1.d2

Other information

Number of subgroups in this conjugacy class$12$
Möbius function not computed
Projective image not computed