Properties

Label 960.10958.15.a1.a1
Order $ 2^{6} $
Index $ 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8:C_2^3$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(15\)\(\medspace = 3 \cdot 5 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, b, c^{3}, e^{15}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $\GL(2,3):D_{10}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times D_5\times A_4).C_2^5$
$\operatorname{Aut}(H)$ $C_2^7:C_2^3$, of order \(1024\)\(\medspace = 2^{10} \)
$\card{W}$\(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_8:C_2^3$
Normal closure:$\GL(2,3):D_{10}$
Core:$C_2\times Q_8$
Minimal over-subgroups:$C_{40}:C_2^3$$\GL(2,3):C_2^2$
Maximal under-subgroups:$C_2^2\times D_4$$C_2\times D_8$$C_2\times \SD_{16}$$C_2\times \OD_{16}$$C_2\times D_8$$D_4:C_2^2$$C_2\times \SD_{16}$$D_8:C_2$$D_8:C_2$$D_8:C_2$$D_8:C_2$$D_8:C_2$$D_8:C_2$$D_8:C_2$$D_8:C_2$

Other information

Number of subgroups in this conjugacy class$15$
Möbius function not computed
Projective image not computed