Properties

Label 960.10958.30.g1.a1
Order $ 2^{5} $
Index $ 2 \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times \SD_{16}$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $b, c^{3}, e^{15}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $\GL(2,3):D_{10}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times D_5\times A_4).C_2^5$
$\operatorname{Aut}(H)$ $D_4^2:C_2$, of order \(128\)\(\medspace = 2^{7} \)
$\card{W}$\(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_8:C_2^3$
Normal closure:$C_{10}:\GL(2,3)$
Core:$C_2\times Q_8$
Minimal over-subgroups:$Q_8:D_{10}$$C_2\times \GL(2,3)$$C_8:C_2^3$
Maximal under-subgroups:$C_2\times Q_8$$C_2\times D_4$$C_2\times C_8$$\SD_{16}$$\SD_{16}$$\SD_{16}$$\SD_{16}$

Other information

Number of subgroups in this conjugacy class$15$
Möbius function not computed
Projective image not computed