Properties

Label 960.10958.12.i1.a1
Order $ 2^{4} \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{40}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $ae^{15}, e^{4}, de^{5}, c^{3}, e^{10}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $\GL(2,3):D_{10}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times D_5\times A_4).C_2^5$
$\operatorname{Aut}(H)$ $C_4^2:C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
$\card{W}$\(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{40}$
Normalizer:$C_{40}:C_2^3$
Normal closure:$C_{10}\times \GL(2,3)$
Core:$C_2\times C_{10}$
Minimal over-subgroups:$C_{10}\times \SD_{16}$$C_8:D_{10}$$C_2\times D_{40}$
Maximal under-subgroups:$C_2\times C_{20}$$C_{40}$$C_{40}$$C_2\times C_8$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function not computed
Projective image not computed