Properties

Label 960.10958.6.e1.a1
Order $ 2^{5} \cdot 5 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8:D_{10}$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $ae^{15}, e^{4}, c^{3}, de^{5}, be^{15}, e^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $\GL(2,3):D_{10}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times D_5\times A_4).C_2^5$
$\operatorname{Aut}(H)$ $C_2^3:D_4\times F_5$, of order \(1280\)\(\medspace = 2^{8} \cdot 5 \)
$\card{W}$\(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_{40}:C_2^3$
Normal closure:$\GL(2,3):D_{10}$
Core:$C_{10}:C_4$
Minimal over-subgroups:$C_{40}:C_2^3$
Maximal under-subgroups:$C_4\times D_{10}$$C_2\times C_{40}$$C_{10}:C_8$$C_{40}:C_2$$C_{40}:C_2$$C_{40}:C_2$$C_{40}:C_2$$C_2\times \OD_{16}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function not computed
Projective image not computed