Subgroup ($H$) information
| Description: | $C_6^4.\SOPlus(4,2)$ |
| Order: | \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \) |
| Index: | $1$ |
| Exponent: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Generators: |
$\langle(19,25)(21,23), (1,2,4,7,3,6,8,11,15,16,17,18)(5,9,12,13)(10,14)(19,20,21,22,23,24,25,26) \!\cdots\! \rangle$
|
| Derived length: | $4$ |
The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, and a Hall subgroup. Whether it is monomial has not been computed.
Ambient group ($G$) information
| Description: | $C_6^4.\SOPlus(4,2)$ |
| Order: | \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \) |
| Exponent: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_1$ |
| Order: | $1$ |
| Exponent: | $1$ |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $0$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^3.A_4^2.C_6^2.C_2$ |
| $\operatorname{Aut}(H)$ | $C_3^3.A_4^2.C_6^2.C_2$ |
| $W$ | $C_6^4.\SOPlus(4,2)$, of order \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \) |
Related subgroups
| Centralizer: | $C_1$ | |||||
| Normalizer: | $C_6^4.\SOPlus(4,2)$ | |||||
| Complements: | $C_1$ | |||||
| Maximal under-subgroups: | $C_6^4.S_3^2$ | $C_3^3.A_4^2.D_6$ | $C_3^4.A_4^2:C_4$ | $C_3^3.S_4\wr C_2$ | $C_6^4:D_4$ | $C_3^4.\SOPlus(4,2)$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $C_6^4.\SOPlus(4,2)$ |