Properties

Label 93312.fs.1.a1
Order $ 2^{7} \cdot 3^{6} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^4.\SOPlus(4,2)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Index: $1$
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Generators: $\langle(19,25)(21,23), (1,2,4,7,3,6,8,11,15,16,17,18)(5,9,12,13)(10,14)(19,20,21,22,23,24,25,26) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, and a Hall subgroup. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_6^4.\SOPlus(4,2)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.A_4^2.C_6^2.C_2$
$\operatorname{Aut}(H)$ $C_3^3.A_4^2.C_6^2.C_2$
$W$$C_6^4.\SOPlus(4,2)$, of order \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_6^4.\SOPlus(4,2)$
Complements:$C_1$
Maximal under-subgroups:$C_6^4.S_3^2$$C_3^3.A_4^2.D_6$$C_3^4.A_4^2:C_4$$C_3^3.S_4\wr C_2$$C_6^4:D_4$$C_3^4.\SOPlus(4,2)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6^4.\SOPlus(4,2)$