Subgroup ($H$) information
Description: | $C_{4620}$ |
Order: | \(4620\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) |
Index: | \(2\) |
Exponent: | \(4620\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) |
Generators: |
$b^{1155}, b^{2310}, b^{2772}, b^{1320}, b^{1540}, b^{420}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, a semidirect factor, and cyclic (hence abelian, elementary ($p = 2,3,5,7,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_{11}\times D_{420}$ |
Order: | \(9240\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) |
Exponent: | \(4620\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_5^4.C_4^2$, of order \(403200\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
$\operatorname{Aut}(H)$ | $C_2^4\times C_{60}$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_{4620}$ | ||||
Normalizer: | $C_{11}\times D_{420}$ | ||||
Complements: | $C_2$ $C_2$ | ||||
Minimal over-subgroups: | $C_{11}\times D_{420}$ | ||||
Maximal under-subgroups: | $C_{2310}$ | $C_{1540}$ | $C_{924}$ | $C_{660}$ | $C_{420}$ |
Other information
Möbius function | $-1$ |
Projective image | $D_{210}$ |