Properties

Label 9240.a.4.a1.a1
Order $ 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{2310}$
Order: \(2310\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2310\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Generators: $b^{2310}, b^{2772}, b^{1320}, b^{1540}, b^{420}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the socle (hence characteristic and normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,5,7,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{11}\times D_{420}$
Order: \(9240\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Exponent: \(4620\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.C_4^2$, of order \(403200\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2^3\times C_{60}$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{4620}$
Normalizer:$C_{11}\times D_{420}$
Minimal over-subgroups:$C_{22}\times D_{105}$$C_{22}\times D_{105}$$C_{4620}$
Maximal under-subgroups:$C_{1155}$$C_{770}$$C_{462}$$C_{330}$$C_{210}$

Other information

Möbius function$2$
Projective image$D_{210}$