Properties

Label 9240.a.11.a1.a1
Order $ 2^{3} \cdot 3 \cdot 5 \cdot 7 $
Index $ 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{420}$
Order: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Index: \(11\)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Generators: $a, b^{1320}, b^{2310}, b^{1540}, b^{1155}, b^{2772}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{11}\times D_{420}$
Order: \(9240\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Exponent: \(4620\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_{11}$
Order: \(11\)
Exponent: \(11\)
Automorphism Group: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Outer Automorphisms: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.C_4^2$, of order \(403200\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_{210}.C_6.C_2^5$
$W$$D_{210}$, of order \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_{22}$
Normalizer:$C_{11}\times D_{420}$
Complements:$C_{11}$
Minimal over-subgroups:$C_{11}\times D_{420}$
Maximal under-subgroups:$D_{210}$$D_{210}$$C_{420}$$D_{140}$$D_{84}$$D_{60}$

Other information

Möbius function$-1$
Projective image not computed