-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '9240.a', 'ambient_counter': 1, 'ambient_order': 9240, 'ambient_tex': 'C_{11}\\times D_{420}', 'central': False, 'central_factor': True, 'centralizer_order': 22, 'characteristic': True, 'core_order': 840, 'counter': 18, 'cyclic': False, 'direct': True, 'hall': 210, 'label': '9240.a.11.a1.a1', 'maximal': True, 'maximal_normal': True, 'metabelian': True, 'metacyclic': None, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '11.a1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '11.1', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': True, 'quotient_hash': 1, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 11, 'quotient_simple': True, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_{11}', 'simple': False, 'solvable': True, 'special_labels': [], 'split': True, 'standard_generators': False, 'stem': False, 'subgroup': '840.128', 'subgroup_hash': 128, 'subgroup_order': 840, 'subgroup_tex': 'D_{420}', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '9240.a', 'aut_centralizer_order': None, 'aut_label': '11.a1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '420.a1.a1', 'complements': ['840.a1.a1'], 'conjugacy_class_count': 1, 'contained_in': ['1.a1.a1'], 'contains': ['22.a1.a1', '22.a1.b1', '22.b1.a1', '33.a1.a1', '55.a1.a1', '77.a1.a1'], 'core': '11.a1.a1', 'coset_action_label': None, 'count': 1, 'diagramx': [9072, 5644, 2564, 2808, 8788, 5800, 6845, 4007], 'generators': [1, 2640, 4620, 3080, 2310, 5544], 'label': '9240.a.11.a1.a1', 'mobius_quo': 0, 'mobius_sub': -1, 'normal_closure': '11.a1.a1', 'normal_contained_in': ['1.a1.a1'], 'normal_contains': ['22.a1.a1', '22.a1.b1', '22.b1.a1'], 'normalizer': '1.a1.a1', 'old_label': '11.a1.a1', 'projective_image': None, 'quotient_action_image': '1.1', 'quotient_action_kernel': '11.1', 'quotient_action_kernel_order': 11, 'quotient_fusion': None, 'short_label': '11.a1.a1', 'subgroup_fusion': None, 'weyl_group': '420.40'}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '4.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 420, 'aut_gen_orders': [30, 12, 6, 12, 12, 12], 'aut_gens': [[1, 2], [753, 802], [551, 802], [239, 118], [441, 106], [113, 86], [565, 214]], 'aut_group': None, 'aut_hash': 5094642642812696659, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 40320, 'aut_permdeg': 420, 'aut_perms': [745476279446612719336756848063585861456419512312121141136262086026953850134454106606235881243870726097720770809292043313905281848051226563631098380158500298238466477643423906483637971483412631237277824822294905151797356542859601056754967493177230015130320628887765592224832712072584682659359312238198820514808187200461950546305438077327189715515152234485129387748389065985681888074288040387313792598215948994923688402510262046563935453127498411628799781161131046113010092600688733427855470072396301185798144379649881065836447435106903195026808443113220258222915088716123530574619520386626002674277096734815880772623925936311375614799589469755945845320133657146385279790622758057485293045307350946646800263000380044538903657694321441308501234885993709309194196643269164512969535764900655557324712911133606435109244806281212020198890337245622184111842628242103400390839332417055122545997225584407221545237932680574728987566, 1102765828361075860599298828639765880006195294051116724875091398852476897170789268675658472880462457841247576211223638746302946320861515170882938367297094439373067525794240088214513254406747534732717875613165880126906191047476956393128492428357689812990329831453681296062221346657239670549307121068458188778092103367585119996261171123865542920799499314942440339470276878965192663376900713700985937652245086842360876096807534888739507613648564282557476818360288012229556333399409037857267082272836536461134639532742175945166527296738909872109714781663050371517910328394022853018027269216740171603723795504321517159400275898232673867916954530485361085271069841103525066551074665808533855212998158170533438745239425911831295226649328345105823974146008185902793088142318115066254002566316387021146969415849796074089691608475125786268293972403035637911337519421176081813683352052896812435241251723545644415050645334863880788896, 608824395606096235608043641494247207906251285840117974658981338363709492130046002367638644325961348084913605538841523877224757247469347859821292048709650365818796094933218870887912905984279575518487937777365503626313350436390919369755745029310464248250056904306904893029266315160286931521701916911442226997165241540992084156364688620988481198696357298273606428926395942197423328653350075688714710252466900377608050766286210331045407321041273638678631456680266327912685073067808692486130217121099739731344025968245135625618820076508101520488332709956742404960825165373622144103809553466421255142097596084284824866442520296887059822016707084650865537618585253146486166233251582429381791796057568393028157656832221883529799853685960994085727454143533439154132453480307695852663604384787217833055955801168959931020612883228542134293701558757701019396358302347480261391402259141223225721764450740608545228793065824003136995884, 1167333509064321318099447391294193671865750258068764485526472602682177588301627002486286659301504541141768313889878384121711544813459192649651908778310134291227465159908468940694503508359917126515377788652254490611252921295681558548911660527422135227829773179183938977654592570771285249219414953281010944521450837193392716592672729544708015329319689173342635715779815072518605205375199650277081901799728435106815020063530906588526627465063442701096387023416915735925623162511042968939272904992891093399783729666761284634674035379270202736378284740661255112368088619423567636695623500291782226107356297577767104145318618609701567586392043432780994967396082413298467925051158983210823115663637031174443278889847949109893168590274449934833565010244904052590387103135081355969132355574966862294224030829118920136967003865696136125674955253781718635291081897298926650067780146026018494285826602332346426737257435221741719531153, 293791219529911074425218313719079573462384198820546595723548082328024741132823355780422490302002213379809491459356031289224647732999978288182095144805030047168307174840687018931322095680938841680343664598486738258435950667357359943856966478790639157207991605291001376572068873286312000483467447350024563281987709526617292223613746857241340437417812100726008975493635528648731463056969342716123600292050798806747684651716739413804940852518584832353823055625640944355756894906591942621299710500086431296608725812813845618142799786973062367942257403537262890223657092337598359692409229250006133104906396576212731270908011301315521285186156844908736275064388259332430058690181447766697505584867873062662052285391072092502154114387657843070187752223890076359842883379684009057904957983673719924353519492356630329299954726501087319919020832864792815651971306983251129958126797188153789517861370975014711186568779673077254757165, 38354864008597978756923681509239520945100390096344624229073654679121284994442446312902120975246901548367318184836646228175681927341993488965964446121966698036961827156184640377987297415421899965949071578038506284950486016585691456475596889660264776461768940923333360101111892534655357422137793272000802216452811625232062397578650443759586221523485511229575304306266068665900620412906482144435717549555790151925802813473505310400912057863841349659195995861330206474588155573455145246638326264804864317752511683324948187292292423146757184069519648744150127292596147224537471137595530540405200598758923305237151882868119206820614369214454832358074675532493896370620124764876534753283363820374699321971147834589850642444205709985778148386209452911280658121903407966713028700304229264524901435595328569067942297844588053747572025882000390439336072387986117558639412278716990265590129730196842544593384125134490830150893573108], 'aut_phi_ratio': 210.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 210, 2, 1], [3, 2, 1, 1], [4, 2, 1, 1], [5, 2, 2, 1], [6, 2, 1, 1], [7, 2, 3, 1], [10, 2, 2, 1], [12, 2, 2, 1], [14, 2, 3, 1], [15, 2, 4, 1], [20, 2, 4, 1], [21, 2, 6, 1], [28, 2, 6, 1], [30, 2, 4, 1], [35, 2, 12, 1], [42, 2, 6, 1], [60, 2, 8, 1], [70, 2, 12, 1], [84, 2, 12, 1], [105, 2, 24, 1], [140, 2, 24, 1], [210, 2, 24, 1], [420, 2, 48, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{210}.C_6.C_2^5', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '4.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 420, 'autcentquo_group': None, 'autcentquo_hash': 2285439238770837057, 'autcentquo_nilpotent': False, 'autcentquo_order': 10080, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2\\times F_5\\times S_3\\times F_7', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 210, 2], [3, 2, 1], [4, 2, 1], [5, 2, 2], [6, 2, 1], [7, 2, 3], [10, 2, 2], [12, 2, 2], [14, 2, 3], [15, 2, 4], [20, 2, 4], [21, 2, 6], [28, 2, 6], [30, 2, 4], [35, 2, 12], [42, 2, 6], [60, 2, 8], [70, 2, 12], [84, 2, 12], [105, 2, 24], [140, 2, 24], [210, 2, 24], [420, 2, 48]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '420.40', 'commutator_count': 1, 'commutator_label': '210.12', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '3.1', '5.1', '7.1'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 128, 'cyclic': False, 'derived_length': 2, 'dihedral': True, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 210, 1, 2], [3, 2, 1, 1], [4, 2, 1, 1], [5, 2, 2, 1], [6, 2, 1, 1], [7, 2, 3, 1], [10, 2, 2, 1], [12, 2, 2, 1], [14, 2, 3, 1], [15, 2, 4, 1], [20, 2, 4, 1], [21, 2, 6, 1], [28, 2, 6, 1], [30, 2, 4, 1], [35, 2, 12, 1], [42, 2, 6, 1], [60, 2, 8, 1], [70, 2, 12, 1], [84, 2, 12, 1], [105, 2, 24, 1], [140, 2, 24, 1], [210, 2, 24, 1], [420, 2, 48, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 3, 'exponent': 420, 'exponents_of_order': [3, 1, 1, 1], 'factors_of_aut_order': [2, 3, 5, 7], 'factors_of_order': [2, 3, 5, 7], 'faithful_reps': [[2, 1, 48]], 'familial': True, 'frattini_label': '2.1', 'frattini_quotient': '420.40', 'hash': 128, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 210, 'inner_gen_orders': [2, 210], 'inner_gens': [[1, 838], [5, 2]], 'inner_hash': 40, 'inner_nilpotent': False, 'inner_order': 420, 'inner_split': True, 'inner_tex': 'D_{210}', 'inner_used': [1, 2], 'irrC_degree': 2, 'irrQ_degree': 96, 'irrQ_dim': 96, 'irrR_degree': 2, 'irrep_stats': [[1, 4], [2, 209]], 'label': '840.128', 'linC_count': 48, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 14, 'linQ_degree_count': 12, 'linQ_dim': 14, 'linQ_dim_count': 12, 'linR_count': 48, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'D420', 'ngens': 6, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 25, 'number_characteristic_subgroups': 25, 'number_conjugacy_classes': 213, 'number_divisions': 26, 'number_normal_subgroups': 27, 'number_subgroup_autclasses': 48, 'number_subgroup_classes': 64, 'number_subgroups': 1368, 'old_label': None, 'order': 840, 'order_factorization_type': 311, 'order_stats': [[1, 1], [2, 421], [3, 2], [4, 2], [5, 4], [6, 2], [7, 6], [10, 4], [12, 4], [14, 6], [15, 8], [20, 8], [21, 12], [28, 12], [30, 8], [35, 24], [42, 12], [60, 16], [70, 24], [84, 24], [105, 48], [140, 48], [210, 48], [420, 96]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 12, 'outer_gen_orders': [2, 2, 2, 12], 'outer_gen_pows': [630, 0, 0, 0], 'outer_gens': [[211, 2], [1, 562], [1, 142], [1, 554]], 'outer_group': '96.220', 'outer_hash': 220, 'outer_nilpotent': True, 'outer_order': 96, 'outer_permdeg': 13, 'outer_perms': [479001600, 3669120, 40320, 41187], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^3\\times C_{12}', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 19, 'pgroup': 0, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 3], [4, 3], [6, 2], [8, 3], [12, 3], [16, 1], [24, 3], [48, 3], [96, 1]], 'representations': {'PC': {'code': 61024344141824610366443502463062971, 'gens': [1, 2], 'pres': [6, -2, -2, -2, -3, -5, -7, 10057, 31, 15050, 50, 19971, 93, 24484, 178, 25925]}, 'GLFp': {'d': 2, 'p': 419, 'gens': [26590285061, 30748104663]}, 'Perm': {'d': 19, 'gens': [357001333118767, 13, 23, 43545600, 50520, 7116370137676800]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'D_{420}', 'transitive_degree': 420, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '44.4', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 420, 'aut_gen_orders': [60, 140, 140, 10, 30, 30, 140], 'aut_gens': [[1, 2], [3125, 386], [6601, 6106], [3301, 6386], [6865, 2182], [859, 358], [1013, 3482], [1519, 1682]], 'aut_group': '10000.dd', 'aut_hash': 4562266160802583006, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 403200, 'aut_permdeg': 430, 'aut_perms': [163257886796346984844186725537617288531011176014164214684938618185844048776628675279329396977212703763956224622408302452498844533053642522371884886267761228445805800322011216767676944826609967347343365947762962850772152748736418635504205677074330085593712429460094880383503039915684754878931419881206235750224262588357357918148433876360718093593204758517797000907398877297636645943752136837439071658846139989855319431993022756827731030678219147824964094953690008486164524976422755985350213069586718967871614111956798573462219396693052682727734108950543470457808709793907908627918561123549257508047727737210247760281019519946930279001227070165963477098446247221605155216677789310942305425681754310032317431299746438171674377305383363905522020564398843111972417920580975271266521965768176785007517996044118562803092121152124679712440092409854873071483636139150881968099167754100619606578240135762927996839181426893093426963821603102243188414446239854, 219827795302336389219786144700931046069720387997008959807038993249688809636041288071654410743006054331094023254247472797802167282853375770795941790076507282444364996945166470249116476565638535396833450758979599472722393548153907490047775385482349395487435804252675345737905668968216602754383206078979059433594753679736555139364511739845074150034401254779386545069929994857221374048123289590988505673527891180874642825885833363125058599826372277877428776961432546540100976985013893290435584117445209222895289821926492291635552902396611259694700588682146553824965915712413708508335442771240595978947015851869141867337121799957430436215260464398462835027157663466685643642779933698689365298534316470653340416331457817162390848671072270639039840722067448635989279492439710769235989005264960217501187875226125776328533377536681734148457131190658418111308747404088286920863184982789747150651539571261370085218079232900569835876966347080887835735334557873, 106100961617567496234918979220902607574219442430857944831510289127096404395908872547228912793033657935024996807536036169045016068899067738487404581979576196955136329031794961558719838059597840301985845810661371075401701846878979556900613241037288545992171610354812719240092254404346893442771380842406995655407449959404917233401277587575280580241410909852791948538244175242386553108278022045948211784379435586281682907448417330851510839712573650263862284222631690368891742059319527566904054555956106268810252442922095029618545618864297600763743855473267854203467913843789516457157035029193180385354964359477068488933710034213343568421445973758464364554625166165667911310853320389195389493896261703253268379971761234454655657878158827663774217322269046646384197628036773377035554872092739173383259951201051221756922059729887744833266981089535143373091929207110526132614619127952867474158540456081251445948462317052367649290073124723010188594239566182, 39451317979007583912300693716677701855384536350679992710724599867313779915747384412096645094680684526282099999318458220779126128773017949300476273457671949781443012863860291275467304398727395226057628907100624656816521889352592918433381307405844626666179408602112669602271351099382231179185467472403257461401233576958115151599115623102209805700410878755917184870546231774539669027585915081725909300153809395432571616185714014127196340755036441007648013239542605036176794615029583453191285864316501667416875306118248219090361931596035108494843087783228245855723569669505337024930155725152364535377174481412070158545761186277945179694151132277756219631984980393380641918967120474245586073402110665624095218339419567245107414918010794173683564120813140493695876349679326110719475631374256668324365987366415991248557727397320223212665656185574027906230997536687333312408451533223922490171672182030535051656216793108873072573288213174579397493535024848, 128181561373618811113264246223894815503978608995648625466215587341710299006560297395935660700848527185828887515853788964078176147498281408459063152223763754807975856344727453657716551839248450343440368066571458110455647584601682922264934438149123440164600670327249793185037605665032862151279839188540944173825411142367733193913187136988748918838981346367709354888239136205161241877277213408383612265217439268187935122703023289270231968932467790479132625595182070268149129670457820871232568119735051475869189666235805760049117092831528031016849821429535346460043843782039380942002018581209205321263486541820005675038705786351161658182334261458311674430510868873801581883761927363733504631899724606963129733474141946056703417871495017870188314360958797540271835134421300981370841738536752430658349426274679706029560472129606501735826686648929259450173435240341965252036349117424432005213766565894891719462992814832568925221754901502449079902501879205, 7231864101418269974774328970832676049246763694206260785681753718024610001597748549027719168325112270515786583298952372903740449073289094959428627768671646103126979982198390630199369065393951299098219695531109945722167906410556292932175602885787570332272620169965467188131374481051444831080841966835565565597965439055823887931564546245842769407901843151408119319910436393432895313526225719663840364489843888391858214430531326473692954269005640712650112428934054213895713766317736555281242726299996219845217916455510765641414034338703494169651188721821531813404821717216730597959383412607638232884235427792254799248394414378820647543093373244401600886807209617854748025968227377453353312315052939492385152647404282564750237934760091724716671423794996626534329987027010671974198561228939351963680930936964562234944365655841961357688415625253354910347247478322356413120433986089566970721408041739252461542624347134838811167343075262171703140582317711, 118700397751657549085698815972346043062399804682154634576253545041282018417937398450010015701779110270821974717720908952231257064971847803655542992926900770690962713003914985983125571441171214330936331571562846790784007915509550109599229119515711501224858829006248653922318640887421213868522956062553506670884718339171365842412318475501905512908217881949490100099526381436376945687402744822296957430089301974225340383087840791044751305600297917580119156809736691843495905267889934296181721814900956199875860737970193013154667818166339027974570573038990038915128049704907513216911110257462781198133065245727166040628190862227518851592574388494548459828553541664676440675254413704798325260612954848083343769540767140368131475469612149078329247285136602334620398582000361649326422095615281635795695509891211594997027563531255769726075973562019534730300723278129442494946022226711446371799253728110368965609771337810173268850324003580141886251773817493], 'aut_phi_ratio': 210.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 210, 2, 1], [3, 2, 1, 1], [4, 2, 1, 1], [5, 2, 2, 1], [6, 2, 1, 1], [7, 2, 3, 1], [10, 2, 2, 1], [11, 1, 10, 1], [12, 2, 2, 1], [14, 2, 3, 1], [15, 2, 4, 1], [20, 2, 4, 1], [21, 2, 6, 1], [22, 1, 10, 1], [22, 210, 20, 1], [28, 2, 6, 1], [30, 2, 4, 1], [33, 2, 10, 1], [35, 2, 12, 1], [42, 2, 6, 1], [44, 2, 10, 1], [55, 2, 20, 1], [60, 2, 8, 1], [66, 2, 10, 1], [70, 2, 12, 1], [77, 2, 30, 1], [84, 2, 12, 1], [105, 2, 24, 1], [110, 2, 20, 1], [132, 2, 20, 1], [140, 2, 24, 1], [154, 2, 30, 1], [165, 2, 40, 1], [210, 2, 24, 1], [220, 2, 40, 1], [231, 2, 60, 1], [308, 2, 60, 1], [330, 2, 40, 1], [385, 2, 120, 1], [420, 2, 48, 1], [462, 2, 60, 1], [660, 2, 80, 1], [770, 2, 120, 1], [924, 2, 120, 1], [1155, 2, 240, 1], [1540, 2, 240, 1], [2310, 2, 240, 1], [4620, 2, 480, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_5^4.C_4^2', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 10, 'autcent_group': '40.14', 'autcent_hash': 14, 'autcent_nilpotent': True, 'autcent_order': 40, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2\\times C_{10}', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 420, 'autcentquo_group': None, 'autcentquo_hash': 2285439238770837057, 'autcentquo_nilpotent': False, 'autcentquo_order': 10080, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2\\times F_5\\times S_3\\times F_7', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 210, 2], [3, 2, 1], [4, 2, 1], [5, 2, 2], [6, 2, 1], [7, 2, 3], [10, 2, 2], [11, 1, 10], [12, 2, 2], [14, 2, 3], [15, 2, 4], [20, 2, 4], [21, 2, 6], [22, 1, 10], [22, 210, 20], [28, 2, 6], [30, 2, 4], [33, 2, 10], [35, 2, 12], [42, 2, 6], [44, 2, 10], [55, 2, 20], [60, 2, 8], [66, 2, 10], [70, 2, 12], [77, 2, 30], [84, 2, 12], [105, 2, 24], [110, 2, 20], [132, 2, 20], [140, 2, 24], [154, 2, 30], [165, 2, 40], [210, 2, 24], [220, 2, 40], [231, 2, 60], [308, 2, 60], [330, 2, 40], [385, 2, 120], [420, 2, 48], [462, 2, 60], [660, 2, 80], [770, 2, 120], [924, 2, 120], [1155, 2, 240], [1540, 2, 240], [2310, 2, 240], [4620, 2, 480]], 'center_label': '22.2', 'center_order': 22, 'central_product': True, 'central_quotient': '420.40', 'commutator_count': 1, 'commutator_label': '210.12', 'complements_known': True, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '3.1', '5.1', '7.1', '11.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['11.1', 1], ['840.128', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 210, 1, 2], [3, 2, 1, 1], [4, 2, 1, 1], [5, 2, 2, 1], [6, 2, 1, 1], [7, 2, 3, 1], [10, 2, 2, 1], [11, 1, 10, 1], [12, 2, 2, 1], [14, 2, 3, 1], [15, 2, 4, 1], [20, 2, 4, 1], [21, 2, 6, 1], [22, 1, 10, 1], [22, 210, 10, 2], [28, 2, 6, 1], [30, 2, 4, 1], [33, 2, 10, 1], [35, 2, 12, 1], [42, 2, 6, 1], [44, 2, 10, 1], [55, 2, 20, 1], [60, 2, 8, 1], [66, 2, 10, 1], [70, 2, 12, 1], [77, 2, 30, 1], [84, 2, 12, 1], [105, 2, 24, 1], [110, 2, 20, 1], [132, 2, 20, 1], [140, 2, 24, 1], [154, 2, 30, 1], [165, 2, 40, 1], [210, 2, 24, 1], [220, 2, 40, 1], [231, 2, 60, 1], [308, 2, 60, 1], [330, 2, 40, 1], [385, 2, 120, 1], [420, 2, 48, 1], [462, 2, 60, 1], [660, 2, 80, 1], [770, 2, 120, 1], [924, 2, 120, 1], [1155, 2, 240, 1], [1540, 2, 240, 1], [2310, 2, 240, 1], [4620, 2, 480, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 36, 'exponent': 4620, 'exponents_of_order': [3, 1, 1, 1, 1], 'factors_of_aut_order': [2, 3, 5, 7], 'factors_of_order': [2, 3, 5, 7, 11], 'faithful_reps': [[2, 0, 480]], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '4620.a', 'hash': 6816930612416858155, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 210, 'inner_gen_orders': [2, 210], 'inner_gens': [[1, 838], [8405, 2]], 'inner_hash': 40, 'inner_nilpotent': False, 'inner_order': 420, 'inner_split': True, 'inner_tex': 'D_{210}', 'inner_used': [1, 2], 'irrC_degree': 2, 'irrQ_degree': 960, 'irrQ_dim': None, 'irrR_degree': None, 'irrep_stats': [[1, 44], [2, 2299]], 'label': '9240.a', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C11*D420', 'ngens': 7, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 50, 'number_characteristic_subgroups': 50, 'number_conjugacy_classes': 2343, 'number_divisions': 52, 'number_normal_subgroups': 54, 'number_subgroup_autclasses': 96, 'number_subgroup_classes': 128, 'number_subgroups': 2736, 'old_label': None, 'order': 9240, 'order_factorization_type': 311, 'order_stats': [[1, 1], [2, 421], [3, 2], [4, 2], [5, 4], [6, 2], [7, 6], [10, 4], [11, 10], [12, 4], [14, 6], [15, 8], [20, 8], [21, 12], [22, 4210], [28, 12], [30, 8], [33, 20], [35, 24], [42, 12], [44, 20], [55, 40], [60, 16], [66, 20], [70, 24], [77, 60], [84, 24], [105, 48], [110, 40], [132, 40], [140, 48], [154, 60], [165, 80], [210, 48], [220, 80], [231, 120], [308, 120], [330, 80], [385, 240], [420, 96], [462, 120], [660, 160], [770, 240], [924, 240], [1155, 480], [1540, 480], [2310, 480], [4620, 960]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 60, 'outer_gen_orders': [2, 2, 2, 2, 60], 'outer_gen_pows': [0, 0, 9030, 0, 0], 'outer_gens': [[1, 8402], [1, 3082], [2311, 8402], [1, 7702], [1, 4586]], 'outer_group': '960.11348', 'outer_hash': 11348, 'outer_nilpotent': True, 'outer_order': 960, 'outer_permdeg': 20, 'outer_perms': [1307761459200, 355693655116800, 121645100408832000, 6227020800, 6270935073], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^4\\times C_{60}', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 30, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 11], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': False, 'ratrep_stats': [[1, 4], [2, 3], [4, 3], [6, 2], [8, 3], [10, 4], [12, 3], [16, 1], [20, 3], [24, 3], [40, 3], [48, 3], [60, 2], [80, 3], [96, 1], [120, 3], [160, 1], [240, 3], [480, 3], [960, 1]], 'representations': {'PC': {'code': '38899698737788854599812578737067875291784826860001359', 'gens': [1, 2], 'pres': [7, -2, -2, -2, -3, -5, -7, -11, 11733, 36, 35198, 58, 93859, 108, 28564, 207, 171365, 334]}, 'GLFp': {'d': 2, 'p': 419, 'gens': [30748104663, 13916081265]}, 'Perm': {'d': 30, 'gens': [9168459100849992178781577164194, 642474319994769439457367091936]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 22], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{11}\\times D_{420}', 'transitive_degree': 4620, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '11.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': True, 'aut_derived_length': 1, 'aut_exponent': 10, 'aut_gen_orders': [10], 'aut_gens': [[1], [2]], 'aut_group': '10.2', 'aut_hash': 2, 'aut_nilpotency_class': 1, 'aut_nilpotent': True, 'aut_order': 10, 'aut_permdeg': 7, 'aut_perms': [753], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [11, 1, 10, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{10}', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 10, 'autcent_group': '10.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 10, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_{10}', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [11, 1, 10]], 'center_label': '11.1', 'center_order': 11, 'central_product': False, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['11.1'], 'composition_length': 1, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': True, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [11, 1, 10, 1]], 'element_repr_type': 'PC', 'elementary': 11, 'eulerian_function': 1, 'exponent': 11, 'exponents_of_order': [1], 'factors_of_aut_order': [2, 5], 'factors_of_order': [11], 'faithful_reps': [[1, 0, 10]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '11.1', 'hash': 1, 'hyperelementary': 11, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 10, 'irrQ_dim': 10, 'irrR_degree': 2, 'irrep_stats': [[1, 11]], 'label': '11.1', 'linC_count': 10, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 10, 'linQ_degree_count': 1, 'linQ_dim': 10, 'linQ_dim_count': 1, 'linR_count': 5, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C11', 'ngens': 1, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 11, 'number_divisions': 2, 'number_normal_subgroups': 2, 'number_subgroup_autclasses': 2, 'number_subgroup_classes': 2, 'number_subgroups': 2, 'old_label': None, 'order': 11, 'order_factorization_type': 1, 'order_stats': [[1, 1], [11, 10]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 10, 'outer_gen_orders': [10], 'outer_gen_pows': [0], 'outer_gens': [[2]], 'outer_group': '10.2', 'outer_hash': 2, 'outer_nilpotent': True, 'outer_order': 10, 'outer_permdeg': 7, 'outer_perms': [753], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_{10}', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 11, 'pgroup': 11, 'primary_abelian_invariants': [11], 'quasisimple': False, 'rank': 1, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 1], [10, 1]], 'representations': {'PC': {'code': 0, 'gens': [1], 'pres': [1, -11]}, 'Lie': [{'d': 1, 'q': 11, 'gens': [4037913], 'family': 'ASigmaL'}], 'GLFp': {'d': 2, 'p': 11, 'gens': [1343]}, 'Perm': {'d': 11, 'gens': [36288000]}}, 'schur_multiplier': [], 'semidirect_product': False, 'simple': True, 'smith_abelian_invariants': [11], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{11}', 'transitive_degree': 11, 'wreath_data': None, 'wreath_product': False}