Properties

Label 9240.a.33.a1.a1
Order $ 2^{3} \cdot 5 \cdot 7 $
Index $ 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{140}$
Order: \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
Index: \(33\)\(\medspace = 3 \cdot 11 \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Generators: $a, b^{2310}, b^{2772}, b^{1155}, b^{1320}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{11}\times D_{420}$
Order: \(9240\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Exponent: \(4620\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.C_4^2$, of order \(403200\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_{70}.(C_2^3\times C_{12})$
$W$$D_{70}$, of order \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_{22}$
Normalizer:$C_{11}\times D_{140}$
Normal closure:$D_{420}$
Core:$C_{140}$
Minimal over-subgroups:$C_{11}\times D_{140}$$D_{420}$
Maximal under-subgroups:$C_{140}$$D_{70}$$D_{70}$$D_{28}$$D_{20}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image not computed