Properties

Label 90720.g.90.b1.a1
Order $ 2^{4} \cdot 3^{2} \cdot 7 $
Index $ 2 \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$F_8:C_3\times S_3$
Order: \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
Index: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $\langle(1,2,4)(3,8,5), (1,5,4,2,9,3,8), (1,4,6,3,8,2,5)(12,14,13), (1,3)(2,8)(4,5) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $A_5\times {}^2G(2,3)$
Order: \(90720\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \cdot 7 \)
Exponent: \(630\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times {}^2G(2,3)$, of order \(181440\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $F_8:C_3\times S_3$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
$W$$F_8:C_3\times S_3$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$F_8:C_3\times S_3$
Normal closure:$A_5\times {}^2G(2,3)$
Core:$C_1$
Minimal over-subgroups:$F_8:\GL(2,4)$$S_3\times {}^2G(2,3)$
Maximal under-subgroups:$F_8:C_3^2$$F_8:C_6$$S_3\times F_8$$A_4\times D_6$$C_{21}:C_6$

Other information

Number of subgroups in this conjugacy class$90$
Möbius function$1$
Projective image$A_5\times {}^2G(2,3)$