Properties

Label 90720.g.270.b1.a1
Order $ 2^{4} \cdot 3 \cdot 7 $
Index $ 2 \cdot 3^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times F_8$
Order: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Index: \(270\)\(\medspace = 2 \cdot 3^{3} \cdot 5 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $\langle(1,6)(2,5)(3,9)(4,8), (1,2)(3,8)(4,9)(5,6), (1,9,3,2,8,6,5), (1,9)(2,4)(3,6)(5,8), (1,3,9,8,6,4,2)(10,14)(11,12), (1,8,2,9,4,3,6)(11,13,12)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $A_5\times {}^2G(2,3)$
Order: \(90720\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \cdot 7 \)
Exponent: \(630\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times {}^2G(2,3)$, of order \(181440\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $F_8:C_3\times S_3$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
$W$$F_8:C_3\times S_3$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$F_8:C_3\times S_3$
Normal closure:$A_5\times \SL(2,8)$
Core:$C_1$
Minimal over-subgroups:$F_8\times A_5$$S_3\times \SL(2,8)$$F_8:C_3\times S_3$
Maximal under-subgroups:$C_3\times F_8$$C_2\times F_8$$C_2^2\times D_6$$S_3\times C_7$

Other information

Number of subgroups in this conjugacy class$90$
Möbius function$-1$
Projective image$A_5\times {}^2G(2,3)$