Properties

Label 90720.g.168.c1.a1
Order $ 2^{2} \cdot 3^{3} \cdot 5 $
Index $ 2^{3} \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9\times A_5$
Order: \(540\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \)
Index: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Generators: $\langle(1,9,8,7,4,3,6,5,2)(10,14,12), (1,2,5,6,3,4,7,8,9), (1,4,2,7,5,8,6,9,3)(10,13)(11,12), (1,6,7)(2,3,8)(4,9,5)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $A_5\times {}^2G(2,3)$
Order: \(90720\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \cdot 7 \)
Exponent: \(630\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times {}^2G(2,3)$, of order \(181440\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_6\times S_5$, of order \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
$W$$C_6\times A_5$, of order \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_9$
Normalizer:$D_9:\GL(2,4)$
Normal closure:$A_5\times \SL(2,8)$
Core:$A_5$
Minimal over-subgroups:$C_9:\GL(2,4)$$D_9\times A_5$
Maximal under-subgroups:$\GL(2,4)$$C_9\times A_4$$C_9\times D_5$$S_3\times C_9$

Other information

Number of subgroups in this conjugacy class$28$
Möbius function$0$
Projective image$A_5\times {}^2G(2,3)$