Properties

Label 90720.g.1008.b1.a1
Order $ 2 \cdot 3^{2} \cdot 5 $
Index $ 2^{4} \cdot 3^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9\times D_5$
Order: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Index: \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Generators: $\langle(1,9,2,3,7,4,6,8,5)(10,12,11,13,14), (10,14,13,11,12), (1,3,6)(2,4,5)(7,8,9)(10,11)(13,14), (11,13)(12,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $A_5\times {}^2G(2,3)$
Order: \(90720\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \cdot 7 \)
Exponent: \(630\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times {}^2G(2,3)$, of order \(181440\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_6\times F_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$W$$C_3\times D_{10}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_9$
Normalizer:$D_{45}:C_6$
Normal closure:$A_5\times \SL(2,8)$
Core:$C_1$
Minimal over-subgroups:$C_9\times A_5$$C_{45}:C_6$$D_5\times D_9$
Maximal under-subgroups:$C_{45}$$C_3\times D_5$$C_{18}$

Other information

Number of subgroups in this conjugacy class$168$
Möbius function$0$
Projective image$A_5\times {}^2G(2,3)$