Properties

Label 9072.b.1.a1.a1
Order $ 2^{4} \cdot 3^{4} \cdot 7 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times {}^2G(2,3)$
Order: \(9072\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7 \)
Index: $1$
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Generators: $\langle(11,12), (1,9,8)(2,3,7)(4,6,5)(10,12,11), (1,3,2)(4,9,5)(10,11), (10,11,12)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, a Hall subgroup, and nonsolvable.

Ambient group ($G$) information

Description: $S_3\times {}^2G(2,3)$
Order: \(9072\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times {}^2G(2,3)$, of order \(9072\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7 \)
$\operatorname{Aut}(H)$ $S_3\times {}^2G(2,3)$, of order \(9072\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7 \)
$W$$S_3\times {}^2G(2,3)$, of order \(9072\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_3\times {}^2G(2,3)$
Complements:$C_1$
Maximal under-subgroups:$C_3\times {}^2G(2,3)$$S_3\times \SL(2,8)$$\SL(2,8):C_6$$F_8:C_3\times S_3$$C_3^2.S_3^2$$S_3\times F_7$

Other information

Möbius function$1$
Projective image$S_3\times {}^2G(2,3)$