Properties

Label 9072.b.3.a1.a1
Order $ 2^{4} \cdot 3^{3} \cdot 7 $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times \SL(2,8)$
Order: \(3024\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 7 \)
Index: \(3\)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Generators: $\langle(11,12), (1,6,3)(2,9,7)(4,8,5)(10,11,12), (1,7,5)(2,6,3)(4,8,9)(10,11), (10,11,12)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $S_3\times {}^2G(2,3)$
Order: \(9072\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times {}^2G(2,3)$, of order \(9072\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7 \)
$\operatorname{Aut}(H)$ $S_3\times {}^2G(2,3)$, of order \(9072\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7 \)
$W$$S_3\times {}^2G(2,3)$, of order \(9072\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_3\times {}^2G(2,3)$
Complements:$C_3$ $C_3$
Minimal over-subgroups:$S_3\times {}^2G(2,3)$
Maximal under-subgroups:$C_3\times \SL(2,8)$$C_2\times \SL(2,8)$$S_3\times F_8$$S_3\times D_9$$S_3\times D_7$

Other information

Möbius function$-1$
Projective image$S_3\times {}^2G(2,3)$