Subgroup ($H$) information
| Description: | $C_6:S_3$ |
| Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Index: | \(25\)\(\medspace = 5^{2} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$a, c^{15}, b^{10}, c^{20}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), a direct factor, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.
Ambient group ($G$) information
| Description: | $C_3^2:C_{10}^2$ |
| Order: | \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_5^2$ |
| Order: | \(25\)\(\medspace = 5^{2} \) |
| Exponent: | \(5\) |
| Automorphism Group: | $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| Outer Automorphisms: | $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times \GL(2,5)\times \AGL(2,3)$ |
| $\operatorname{Aut}(H)$ | $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| $W$ | $C_3:S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Related subgroups
| Centralizer: | $C_5\times C_{10}$ | ||
| Normalizer: | $C_3^2:C_{10}^2$ | ||
| Complements: | $C_5^2$ | ||
| Minimal over-subgroups: | $C_{30}:S_3$ | ||
| Maximal under-subgroups: | $C_3\times C_6$ | $C_3:S_3$ | $D_6$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $5$ |
| Projective image | $C_{15}^2:C_2$ |