Subgroup ($H$) information
| Description: | $C_5\times C_{10}$ |
| Order: | \(50\)\(\medspace = 2 \cdot 5^{2} \) |
| Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Generators: |
$c^{15}, c^{6}, b^{3}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, elementary for $p = 5$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_3^2:C_{10}^2$ |
| Order: | \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_3:S_3$ |
| Order: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
| Outer Automorphisms: | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times \GL(2,5)\times \AGL(2,3)$ |
| $\operatorname{Aut}(H)$ | $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $C_3^2:C_{10}^2$ | |
| Normalizer: | $C_3^2:C_{10}^2$ | |
| Complements: | $C_3:S_3$ | |
| Minimal over-subgroups: | $C_5\times C_{30}$ | $C_{10}^2$ |
| Maximal under-subgroups: | $C_5^2$ | $C_{10}$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-27$ |
| Projective image | $C_3:S_3$ |