Properties

Label 87780.b.57.a1.a1
Order $ 2^{2} \cdot 5 \cdot 7 \cdot 11 $
Index $ 3 \cdot 19 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}\times D_{70}$
Order: \(1540\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \cdot 11 \)
Index: \(57\)\(\medspace = 3 \cdot 19 \)
Exponent: \(770\)\(\medspace = 2 \cdot 5 \cdot 7 \cdot 11 \)
Generators: $a, b^{27930}, b^{17556}, b^{21945}, b^{37620}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{209}\times D_{210}$
Order: \(87780\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \)
Exponent: \(43890\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_{90}\times F_5\times S_3\times F_7$
$\operatorname{Aut}(H)$ $C_2\times C_{10}\times F_5\times F_7$
$W$$D_{35}$, of order \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_{418}$
Normalizer:$D_{35}\times C_{418}$
Normal closure:$C_{11}\times D_{210}$
Core:$C_{770}$
Minimal over-subgroups:$D_{35}\times C_{418}$$C_{11}\times D_{210}$
Maximal under-subgroups:$C_{770}$$C_{11}\times D_{35}$$C_{11}\times D_{35}$$C_{11}\times D_{14}$$C_{11}\times D_{10}$$D_{70}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_{19}\times D_{105}$