Properties

Label 87780.b.19.a1.a1
Order $ 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 $
Index $ 19 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}\times D_{210}$
Order: \(4620\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Index: \(19\)
Exponent: \(2310\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Generators: $a, b^{37620}, b^{27930}, b^{14630}, b^{21945}, b^{17556}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{209}\times D_{210}$
Order: \(87780\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \)
Exponent: \(43890\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_{19}$
Order: \(19\)
Exponent: \(19\)
Automorphism Group: $C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
Outer Automorphisms: $C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_{90}\times F_5\times S_3\times F_7$
$\operatorname{Aut}(H)$ $D_5:F_5^2$, of order \(100800\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
$W$$D_{105}$, of order \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_{418}$
Normalizer:$C_{209}\times D_{210}$
Complements:$C_{19}$
Minimal over-subgroups:$C_{209}\times D_{210}$
Maximal under-subgroups:$C_{2310}$$C_{11}\times D_{105}$$C_{11}\times D_{105}$$C_{11}\times D_{70}$$C_{11}\times D_{42}$$C_{11}\times D_{30}$$D_{210}$

Other information

Möbius function$-1$
Projective image$C_{19}\times D_{105}$