Properties

Label 87780.b
Order \( 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \)
Exponent \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \cdot 11 \cdot 19 \)
$\card{Z(G)}$ \( 2 \cdot 11 \cdot 19 \)
$\card{\Aut(G)}$ \( 2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2^{6} \cdot 3^{3} \cdot 5 \)
Perm deg. $47$
Trans deg. $43890$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 47 | (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30)(31,32)(33,34,35,37,36)(38,39,40)(41,42,43,45,47,46,44), (31,32)(34,36)(35,37)(39,40)(42,44)(43,46)(45,47) >;
 
Copy content gap:G := Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30)(31,32)(33,34,35,37,36)(38,39,40)(41,42,43,45,47,46,44), (31,32)(34,36)(35,37)(39,40)(42,44)(43,46)(45,47) );
 
Copy content sage:G = PermutationGroup(['(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30)(31,32)(33,34,35,37,36)(38,39,40)(41,42,43,45,47,46,44)', '(31,32)(34,36)(35,37)(39,40)(42,44)(43,46)(45,47)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(326170906360152851333218179981969164275240420482555559046255,87780)'); a = G.1; b = G.2;
 

Group information

Description:$C_{209}\times D_{210}$
Order: \(87780\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(43890\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^2\times C_{90}\times F_5\times S_3\times F_7$, of order \(1814400\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 2, $C_3$, $C_5$, $C_7$, $C_{11}$, $C_{19}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 5 6 7 10 11 14 15 19 21 22 30 33 35 38 42 55 57 66 70 77 95 105 110 114 133 154 165 190 209 210 231 266 285 330 385 399 418 462 570 627 665 770 798 1045 1155 1254 1330 1463 1995 2090 2310 2926 3135 3990 4389 6270 7315 8778 14630 21945 43890
Elements 1 211 2 4 2 6 4 10 6 8 18 12 2110 8 20 24 3798 12 40 36 20 24 60 72 48 40 36 108 60 80 72 180 48 120 108 144 80 240 216 37980 120 144 360 432 240 216 720 480 360 432 1080 864 720 480 1080 1440 864 2160 1440 4320 2160 4320 8640 8640 87780
Conjugacy classes   1 3 1 2 1 3 2 10 3 4 18 6 30 4 10 12 54 6 20 18 10 12 30 36 24 20 18 54 30 40 36 180 24 60 54 72 40 120 108 540 60 72 180 216 120 108 360 240 180 216 540 432 360 240 540 720 432 1080 720 2160 1080 2160 4320 4320 22572
Divisions 1 3 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 72
Autjugacy classes 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 68

Minimal presentations

Permutation degree:$47$
Transitive degree:$43890$
Rank: $2$
Inequivalent generating pairs: $720$

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: $\langle a, b \mid a^{2}=b^{43890}=1, b^{a}=b^{419} \rangle$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([7, -2, -2, -3, -5, -7, -11, -19, 11733, 36, 35198, 79, 140787, 164, 879904, 277, 502]); a,b := Explode([G.1, G.2]); AssignNames(~G, ["a", "b", "b2", "b6", "b30", "b210", "b2310"]);
 
Copy content gap:G := PcGroupCode(326170906360152851333218179981969164275240420482555559046255,87780); a := G.1; b := G.2;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(326170906360152851333218179981969164275240420482555559046255,87780)'); a = G.1; b = G.2;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(326170906360152851333218179981969164275240420482555559046255,87780)'); a = G.1; b = G.2;
 
Permutation group:Degree $47$ $\langle(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 47 | (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30)(31,32)(33,34,35,37,36)(38,39,40)(41,42,43,45,47,46,44), (31,32)(34,36)(35,37)(39,40)(42,44)(43,46)(45,47) >;
 
Copy content gap:G := Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30)(31,32)(33,34,35,37,36)(38,39,40)(41,42,43,45,47,46,44), (31,32)(34,36)(35,37)(39,40)(42,44)(43,46)(45,47) );
 
Copy content sage:G = PermutationGroup(['(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30)(31,32)(33,34,35,37,36)(38,39,40)(41,42,43,45,47,46,44)', '(31,32)(34,36)(35,37)(39,40)(42,44)(43,46)(45,47)'])
 
Matrix group:$\left\langle \left(\begin{array}{rr} 227 & 233 \\ 326 & 227 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 418 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{419})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 2, GF(419) | [[227, 233, 326, 227], [1, 0, 0, 418]] >;
 
Copy content gap:G := Group([[[ Z(419)^315, Z(419)^219 ], [ Z(419)^218, Z(419)^315 ]], [[ Z(419)^0, 0*Z(419) ], [ 0*Z(419), Z(419)^209 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(419), 2, 2) G = MatrixGroup([MS([[227, 233], [326, 227]]), MS([[1, 0], [0, 418]])])
 
Direct product: $C_2$ $\, \times\, $ $C_{11}$ $\, \times\, $ $C_{19}$ $\, \times\, $ $D_{105}$
Semidirect product: $C_{8778}$ $\,\rtimes\,$ $D_5$ $C_{7315}$ $\,\rtimes\,$ $D_6$ $C_{6270}$ $\,\rtimes\,$ $D_7$ $C_{627}$ $\,\rtimes\,$ $D_{70}$ all 56
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2} \times C_{418} \simeq C_{2}^{2} \times C_{11} \times C_{19}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 2368 subgroups in 160 conjugacy classes, 76 normal (68 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_{418}$ $G/Z \simeq$ $D_{105}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_{105}$ $G/G' \simeq$ $C_2\times C_{418}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_{209}\times D_{210}$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_{43890}$ $G/\operatorname{Fit} \simeq$ $C_2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_{209}\times D_{210}$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_{43890}$ $G/\operatorname{soc} \simeq$ $C_2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}$
19-Sylow subgroup: $P_{ 19 } \simeq$ $C_{19}$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $C_{209}\times D_{210}$ $\rhd$ $C_{105}$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_{209}\times D_{210}$ $\rhd$ $C_{209}\times D_{105}$ $\rhd$ $C_{21945}$ $\rhd$ $C_{7315}$ $\rhd$ $C_{1463}$ $\rhd$ $C_{209}$ $\rhd$ $C_{19}$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_{209}\times D_{210}$ $\rhd$ $C_{105}$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_{418}$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $22572 \times 22572$ character table is not available for this group.

Rational character table

The $72 \times 72$ rational character table is not available for this group.