Properties

Label 8748.fn.324.h1.a1
Order $ 3^{3} $
Index $ 2^{2} \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_9$
Order: \(27\)\(\medspace = 3^{3} \)
Index: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $b^{14}de^{2}f^{2}, f$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_3^5.S_3^2$
Order: \(8748\)\(\medspace = 2^{2} \cdot 3^{7} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_3^4.C_2^2$
$\operatorname{Aut}(H)$ $C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$W$$C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3\times C_9$
Normalizer:$C_3^3.S_3^2$
Normal closure:$C_3^3:C_9$
Core:$C_3^2$
Minimal over-subgroups:$C_3^2:C_9$$C_9:C_3^2$$C_3^2:C_9$$C_3\times D_9$$C_3:D_9$$S_3\times C_9$
Maximal under-subgroups:$C_3^2$$C_9$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$0$
Projective image$C_3^5.S_3^2$