Properties

Label 8748.fn.9.d1.a1
Order $ 2^{2} \cdot 3^{5} $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3.S_3^2$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a^{3}ce^{2}f, b^{6}, ef, b^{9}, f, a^{2}def, b^{14}ef$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_3^5.S_3^2$
Order: \(8748\)\(\medspace = 2^{2} \cdot 3^{7} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_3^4.C_2^2$
$\operatorname{Aut}(H)$ $C_3^3.S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
$W$$C_3^3.S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3^3.S_3^2$
Normal closure:$C_3^5.S_3^2$
Core:$C_3^4$
Minimal over-subgroups:$C_3^5.D_6$
Maximal under-subgroups:$C_3^4.S_3$$C_3^4.S_3$$C_3^4.C_6$$C_3\wr C_2^2$$C_3^2.S_3^2$$C_3^2:D_{18}$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$0$
Projective image$C_3^5.S_3^2$