Subgroup ($H$) information
Description: | $D_{10}$ |
Order: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Index: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
Generators: |
$ab, b^{4}, b^{10}$
|
Derived length: | $2$ |
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
Description: | $C_{21}:D_{20}$ |
Order: | \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
Exponent: | \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^3\times F_5\times F_7$ |
$\operatorname{Aut}(H)$ | $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
$\operatorname{res}(S)$ | $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$W$ | $D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Related subgroups
Centralizer: | $C_6$ | ||
Normalizer: | $C_3\times D_{20}$ | ||
Normal closure: | $D_{70}$ | ||
Core: | $C_{10}$ | ||
Minimal over-subgroups: | $D_{70}$ | $C_3\times D_{10}$ | $D_{20}$ |
Maximal under-subgroups: | $C_{10}$ | $D_5$ | $C_2^2$ |
Other information
Number of subgroups in this conjugacy class | $7$ |
Möbius function | $-1$ |
Projective image | $C_{15}:D_{14}$ |