Properties

Label 840.154.3.a1.a1
Order $ 2^{3} \cdot 5 \cdot 7 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{35}:D_4$
Order: \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
Index: \(3\)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Generators: $a, c^{10}, d, c^{35}, c^{42}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{35}:S_4$
Order: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6\times F_5\times S_4$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2^2\times C_6\times F_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_2^2\times C_6\times F_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_{14}$
Normalizer:$C_{35}:D_4$
Normal closure:$C_{35}:S_4$
Core:$C_2\times C_{70}$
Minimal over-subgroups:$C_{35}:S_4$
Maximal under-subgroups:$C_2\times C_{70}$$C_7\times D_{10}$$C_5:C_{28}$$C_7\times D_4$$C_5:D_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$C_5:S_4$