Subgroup ($H$) information
| Description: | $C_{35}:D_4$ |
| Order: | \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \) |
| Index: | \(3\) |
| Exponent: | \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \) |
| Generators: |
$a, c^{10}, d, c^{35}, c^{42}$
|
| Derived length: | $2$ |
The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $C_{35}:S_4$ |
| Order: | \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
| Exponent: | \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6\times F_5\times S_4$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \) |
| $\operatorname{Aut}(H)$ | $C_2^2\times C_6\times F_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| $\operatorname{res}(S)$ | $C_2^2\times C_6\times F_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $3$ |
| Möbius function | $-1$ |
| Projective image | $C_5:S_4$ |