Properties

Label 839808.cw.6561.a1
Order $ 2^{7} $
Index $ 3^{8} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4.D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(6561\)\(\medspace = 3^{8} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,11,8,6)(2,12,9,5)(3,10,7,4)(13,20,14,21)(15,19)(16,17), (1,8)(2,7)(3,9) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_3^8:C_2^4.D_4$
Order: \(839808\)\(\medspace = 2^{7} \cdot 3^{8} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^8:(C_2^2\times D_4).D_4^2$, of order \(13436928\)\(\medspace = 2^{11} \cdot 3^{8} \)
$\operatorname{Aut}(H)$ $C_2^4.D_4^2$, of order \(1024\)\(\medspace = 2^{10} \)
$W$$C_2^4:C_4$, of order \(64\)\(\medspace = 2^{6} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^4.D_4$
Normal closure:$C_3^8:C_2^4.D_4$
Core:$C_1$

Other information

Number of subgroups in this autjugacy class$6561$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^8:C_2^4.D_4$