Properties

Label 13436928.xl
Order \( 2^{11} \cdot 3^{8} \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{13} \cdot 3^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. not computed
Trans deg. $36$
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,35,8,36,9,32,4,33,5,29,3,30)(2,31,6,34,7,28)(10,22,16,23,13,24)(11,25,18,20,14,27,12,19,17,26,15,21), (1,12,26,31,4,15,23,34,7,18,20,28)(2,16,19,35,5,10,25,29,8,13,22,32)(3,14,24,30,6,17,21,33,9,11,27,36), (1,18,3,14)(2,10)(4,15,9,17)(5,16,8,13)(6,11,7,12)(19,31,25,34)(20,29,27,30)(21,36,26,32)(22,28)(23,35,24,33), (1,36,7,35)(2,31,5,32)(3,29)(4,34)(6,30,9,28)(8,33)(10,21,12,23,15,27,14,20,17,24,16,26)(11,25,18,19,13,22) >;
 
Copy content gap:G := Group( (1,35,8,36,9,32,4,33,5,29,3,30)(2,31,6,34,7,28)(10,22,16,23,13,24)(11,25,18,20,14,27,12,19,17,26,15,21), (1,12,26,31,4,15,23,34,7,18,20,28)(2,16,19,35,5,10,25,29,8,13,22,32)(3,14,24,30,6,17,21,33,9,11,27,36), (1,18,3,14)(2,10)(4,15,9,17)(5,16,8,13)(6,11,7,12)(19,31,25,34)(20,29,27,30)(21,36,26,32)(22,28)(23,35,24,33), (1,36,7,35)(2,31,5,32)(3,29)(4,34)(6,30,9,28)(8,33)(10,21,12,23,15,27,14,20,17,24,16,26)(11,25,18,19,13,22) );
 
Copy content sage:G = PermutationGroup(['(1,35,8,36,9,32,4,33,5,29,3,30)(2,31,6,34,7,28)(10,22,16,23,13,24)(11,25,18,20,14,27,12,19,17,26,15,21)', '(1,12,26,31,4,15,23,34,7,18,20,28)(2,16,19,35,5,10,25,29,8,13,22,32)(3,14,24,30,6,17,21,33,9,11,27,36)', '(1,18,3,14)(2,10)(4,15,9,17)(5,16,8,13)(6,11,7,12)(19,31,25,34)(20,29,27,30)(21,36,26,32)(22,28)(23,35,24,33)', '(1,36,7,35)(2,31,5,32)(3,29)(4,34)(6,30,9,28)(8,33)(10,21,12,23,15,27,14,20,17,24,16,26)(11,25,18,19,13,22)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2096724818834265415970350871638707546256673948515945990580589559477257809306295833916875052978144537815363369427069182431960282726889307564152031541700950500178048821006929640717414496319743628790151838694923707092139874350316848884249258978562318327668511268658241890228004126015139967385615608361440107591597282144945739734625027643443590235605726907700288026311171842105298701409231823526238695191909064445574146959011315722276074782401353777956763321986283621025030958841579130694062226683553965460807055030742993217116484606889191142504774560628656584150597318471605337724513198774838449284266028884577211308145340610833568877468928587818731991034579657794209596439999332503044369552753885199265401188408796069758113397215135450560156531952002946330981815286091366919620692885244648220782529717867339603430839623278097722367667109576439934008446678896395408766588721971040442167747060626197676507575033641736760476202876017614154826756671402983621276565353882791106488446751643023405006840757674935242756933975007985946591812891863104160968218752000392139231683774873430835963157786489192449215,13436928)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.6; f = G.8; g = G.10; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19;
 

Group information

Description:$C_3^8:(C_2^2\times D_4).D_4^2$
Order: \(13436928\)\(\medspace = 2^{11} \cdot 3^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_3^8.C_2^4.C_2^6.C_2^3$, of order \(53747712\)\(\medspace = 2^{13} \cdot 3^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 11, $C_3$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 24
Elements 1 37359 6560 1826064 1530720 4665600 4997376 373248 13436928
Conjugacy classes   1 25 22 44 188 22 54 4 360
Divisions 1 25 22 43 188 17 50 2 348
Autjugacy classes 1 18 14 29 92 15 26 3 198

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 32 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m \mid c^{2}=e^{4}=g^{12}=h^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([19, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 206332096, 220565605, 96, 139533950, 165586408, 635944899, 157907654, 83477377, 531320564, 187908883, 264516902, 159385171, 54759600, 799236677, 30849336, 90529723, 112199318, 66368829, 328, 22309958, 453642809, 183512380, 28273735, 64708838, 269022983, 636612506, 489595693, 68098496, 25264915, 16915270, 351849, 444, 2103097544, 657871227, 255312622, 73718849, 16405140, 22074151, 4396874, 3238, 1792288249, 524078548, 21267887, 297769586, 70549365, 14809464, 22227843, 9036922, 8906411, 560, 2566600266, 798286397, 2969520, 90167683, 118300774, 78291505, 5382292, 618, 634576907, 437059614, 56733764, 86727639, 43363882, 22013, 1381749628, 526764087, 747212594, 198431965, 44531224, 81059579, 7860654, 8776549, 11248544, 4318731, 692296, 734, 1770509, 1073737760, 2451507, 32481862, 20531033, 34933356, 153343, 8733458, 38469, 338536, 6587, 2300866574, 867895713, 165473332, 3939911, 8372269, 492608, 2093187, 123286, 1539185, 20724, 3662, 2067783695, 645394466, 310984757, 157710408, 224833627, 88077422, 1576065, 4158868, 5121959, 1619898, 853837, 11187, 928917008, 998002851, 59535414, 122915785, 221025116, 95814831, 5023426, 5395541, 4395552, 1077715, 732770, 25438, 1363272209, 1966855716, 338826295, 68553290, 65007453, 788080, 15956483, 197142, 3989257, 730700, 665055, 145937, 1856637458, 2126584613, 954842168, 207404683, 203361502, 123306161, 50528580, 19286215, 10604906, 4817373, 1767664, 398790]); a,b,c,d,e,f,g,h,i,j,k,l,m := Explode([G.1, G.2, G.4, G.5, G.6, G.8, G.10, G.13, G.15, G.16, G.17, G.18, G.19]); AssignNames(~G, ["a", "b", "b2", "c", "d", "e", "e2", "f", "f2", "g", "g2", "g4", "h", "h2", "i", "j", "k", "l", "m"]);
 
Copy content gap:G := PcGroupCode(2096724818834265415970350871638707546256673948515945990580589559477257809306295833916875052978144537815363369427069182431960282726889307564152031541700950500178048821006929640717414496319743628790151838694923707092139874350316848884249258978562318327668511268658241890228004126015139967385615608361440107591597282144945739734625027643443590235605726907700288026311171842105298701409231823526238695191909064445574146959011315722276074782401353777956763321986283621025030958841579130694062226683553965460807055030742993217116484606889191142504774560628656584150597318471605337724513198774838449284266028884577211308145340610833568877468928587818731991034579657794209596439999332503044369552753885199265401188408796069758113397215135450560156531952002946330981815286091366919620692885244648220782529717867339603430839623278097722367667109576439934008446678896395408766588721971040442167747060626197676507575033641736760476202876017614154826756671402983621276565353882791106488446751643023405006840757674935242756933975007985946591812891863104160968218752000392139231683774873430835963157786489192449215,13436928); a := G.1; b := G.2; c := G.4; d := G.5; e := G.6; f := G.8; g := G.10; h := G.13; i := G.15; j := G.16; k := G.17; l := G.18; m := G.19;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2096724818834265415970350871638707546256673948515945990580589559477257809306295833916875052978144537815363369427069182431960282726889307564152031541700950500178048821006929640717414496319743628790151838694923707092139874350316848884249258978562318327668511268658241890228004126015139967385615608361440107591597282144945739734625027643443590235605726907700288026311171842105298701409231823526238695191909064445574146959011315722276074782401353777956763321986283621025030958841579130694062226683553965460807055030742993217116484606889191142504774560628656584150597318471605337724513198774838449284266028884577211308145340610833568877468928587818731991034579657794209596439999332503044369552753885199265401188408796069758113397215135450560156531952002946330981815286091366919620692885244648220782529717867339603430839623278097722367667109576439934008446678896395408766588721971040442167747060626197676507575033641736760476202876017614154826756671402983621276565353882791106488446751643023405006840757674935242756933975007985946591812891863104160968218752000392139231683774873430835963157786489192449215,13436928)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.6; f = G.8; g = G.10; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2096724818834265415970350871638707546256673948515945990580589559477257809306295833916875052978144537815363369427069182431960282726889307564152031541700950500178048821006929640717414496319743628790151838694923707092139874350316848884249258978562318327668511268658241890228004126015139967385615608361440107591597282144945739734625027643443590235605726907700288026311171842105298701409231823526238695191909064445574146959011315722276074782401353777956763321986283621025030958841579130694062226683553965460807055030742993217116484606889191142504774560628656584150597318471605337724513198774838449284266028884577211308145340610833568877468928587818731991034579657794209596439999332503044369552753885199265401188408796069758113397215135450560156531952002946330981815286091366919620692885244648220782529717867339603430839623278097722367667109576439934008446678896395408766588721971040442167747060626197676507575033641736760476202876017614154826756671402983621276565353882791106488446751643023405006840757674935242756933975007985946591812891863104160968218752000392139231683774873430835963157786489192449215,13436928)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.6; f = G.8; g = G.10; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19;
 
Permutation group:Degree $36$ $\langle(1,35,8,36,9,32,4,33,5,29,3,30)(2,31,6,34,7,28)(10,22,16,23,13,24)(11,25,18,20,14,27,12,19,17,26,15,21) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,35,8,36,9,32,4,33,5,29,3,30)(2,31,6,34,7,28)(10,22,16,23,13,24)(11,25,18,20,14,27,12,19,17,26,15,21), (1,12,26,31,4,15,23,34,7,18,20,28)(2,16,19,35,5,10,25,29,8,13,22,32)(3,14,24,30,6,17,21,33,9,11,27,36), (1,18,3,14)(2,10)(4,15,9,17)(5,16,8,13)(6,11,7,12)(19,31,25,34)(20,29,27,30)(21,36,26,32)(22,28)(23,35,24,33), (1,36,7,35)(2,31,5,32)(3,29)(4,34)(6,30,9,28)(8,33)(10,21,12,23,15,27,14,20,17,24,16,26)(11,25,18,19,13,22) >;
 
Copy content gap:G := Group( (1,35,8,36,9,32,4,33,5,29,3,30)(2,31,6,34,7,28)(10,22,16,23,13,24)(11,25,18,20,14,27,12,19,17,26,15,21), (1,12,26,31,4,15,23,34,7,18,20,28)(2,16,19,35,5,10,25,29,8,13,22,32)(3,14,24,30,6,17,21,33,9,11,27,36), (1,18,3,14)(2,10)(4,15,9,17)(5,16,8,13)(6,11,7,12)(19,31,25,34)(20,29,27,30)(21,36,26,32)(22,28)(23,35,24,33), (1,36,7,35)(2,31,5,32)(3,29)(4,34)(6,30,9,28)(8,33)(10,21,12,23,15,27,14,20,17,24,16,26)(11,25,18,19,13,22) );
 
Copy content sage:G = PermutationGroup(['(1,35,8,36,9,32,4,33,5,29,3,30)(2,31,6,34,7,28)(10,22,16,23,13,24)(11,25,18,20,14,27,12,19,17,26,15,21)', '(1,12,26,31,4,15,23,34,7,18,20,28)(2,16,19,35,5,10,25,29,8,13,22,32)(3,14,24,30,6,17,21,33,9,11,27,36)', '(1,18,3,14)(2,10)(4,15,9,17)(5,16,8,13)(6,11,7,12)(19,31,25,34)(20,29,27,30)(21,36,26,32)(22,28)(23,35,24,33)', '(1,36,7,35)(2,31,5,32)(3,29)(4,34)(6,30,9,28)(8,33)(10,21,12,23,15,27,14,20,17,24,16,26)(11,25,18,19,13,22)'])
 
Transitive group: 36T62873 36T62877 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^8.C_4:D_4)$ . $D_4^2$ $(C_3^8:(C_2^5.D_4))$ . $D_4$ $(C_3^7.D_6)$ . $(C_2^6:D_4)$ $(C_3^8.C_2^3.C_2^5)$ . $D_4$ (18) all 114
Aut. group: $\Aut(C_3^8:C_2^4.D_4)$

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{9}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 325 normal subgroups (147 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_3^8:(C_2^2\times D_4).D_4^2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^8.C_2^3.C_2^4$ $G/G' \simeq$ $C_2^4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_3^8:(C_2^2\times D_4).D_4^2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3^8$ $G/\operatorname{Fit} \simeq$ $C_2^3.C_2^4.C_2^4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^8:(C_2^2\times D_4).D_4^2$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^8$ $G/\operatorname{soc} \simeq$ $C_2^3.C_2^4.C_2^4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_4^2.C_2^6.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^8$

Subgroup diagram and profile

Series

Derived series $C_3^8:(C_2^2\times D_4).D_4^2$ $\rhd$ $C_3^8.C_2^3.C_2^4$ $\rhd$ $C_3^7.D_6$ $\rhd$ $C_3^8$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^8:(C_2^2\times D_4).D_4^2$ $\rhd$ $C_3^8.C_4^2.C_2^6$ $\rhd$ $C_3^8.C_2^4.C_2^5$ $\rhd$ $C_3^8.C_2^4.C_2^4$ $\rhd$ $C_3^8.C_2^3.C_2^4$ $\rhd$ $C_3^8.C_2^3.C_2^3$ $\rhd$ $C_3^8:(C_2^2\times D_4)$ $\rhd$ $C_3^8:(C_2^2\times C_4)$ $\rhd$ $C_3^8:C_2^3$ $\rhd$ $C_3^7.D_6$ $\rhd$ $C_3^8.C_2$ $\rhd$ $C_3^8$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^8:(C_2^2\times D_4).D_4^2$ $\rhd$ $C_3^8.C_2^3.C_2^4$ $\rhd$ $C_3^8:(C_2\times C_4)$ $\rhd$ $C_3^7.D_6$ $\rhd$ $C_3^8.C_2$ $\rhd$ $C_3^8$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $360 \times 360$ character table is not available for this group.

Rational character table

The $348 \times 348$ rational character table is not available for this group.