Properties

Label 8160.a.102.a1.a1
Order $ 2^{4} \cdot 5 $
Index $ 2 \cdot 3 \cdot 17 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:C_5$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(102\)\(\medspace = 2 \cdot 3 \cdot 17 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(1,4)(2,13)(3,14)(5,12)(6,17)(7,11)(8,10)(9,15), (1,14)(2,6)(3,4)(5,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $\SOMinus(4,4)$
Order: \(8160\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 17 \)
Exponent: \(1020\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 17 \)
Derived length:$1$

The ambient group is nonabelian, almost simple, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,16).C_4$, of order \(16320\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 17 \)
$\operatorname{Aut}(H)$ $F_{16}:C_4$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
$W$$F_{16}:C_2$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$F_{16}:C_2$
Normal closure:$\SL(2,16)$
Core:$C_1$
Minimal over-subgroups:$F_{16}$$C_2^4:D_5$
Maximal under-subgroups:$C_2^4$$C_5$

Other information

Number of subgroups in this conjugacy class$17$
Möbius function$0$
Projective image$\SOMinus(4,4)$