Properties

Label 800.814.10.d1.c1
Order $ 2^{4} \cdot 5 $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:\OD_{16}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $ac^{5}, b^{10}, b^{20}, b^{5}, c^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a direct factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_2\times C_{20}.C_{20}$
Order: \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2\times C_4^2\times C_2\wr C_2^2)$
$\operatorname{Aut}(H)$ $D_{10}.C_2^4$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\operatorname{res}(S)$$D_{10}.C_2^4$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_{20}$
Normalizer:$C_2\times C_{20}.C_{20}$
Complements:$C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$
Minimal over-subgroups:$C_{20}.C_{20}$$C_{10}:\OD_{16}$
Maximal under-subgroups:$C_2\times C_{20}$$C_5:C_8$$C_5:C_8$$\OD_{16}$
Autjugate subgroups:800.814.10.d1.a1800.814.10.d1.b1800.814.10.d1.d1

Other information

Möbius function$1$
Projective image$C_{10}\times D_{10}$